Assessing the distributional effects of financial development on consumption-based carbon emissions in Sub-Saharan Africa: a quantile-based analysis

This study assessed the role of financial development (FD) and its distributional effects in explaining consumption-based carbon (ConCO2) emissions, in a framework that also examined the environmental Kuznets curve (EKC) hypothesis, in the context of 19 Sub-Saharan African countries. A composite ind...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2022-07, Vol.29 (33), p.49870-49883
Hauptverfasser: Anochiwa, Lasbrey I., Agbanike, Tobechi F., Ikpe, Marius, Ojike, Richard O., Obidike, Paul C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 49883
container_issue 33
container_start_page 49870
container_title Environmental science and pollution research international
container_volume 29
creator Anochiwa, Lasbrey I.
Agbanike, Tobechi F.
Ikpe, Marius
Ojike, Richard O.
Obidike, Paul C.
description This study assessed the role of financial development (FD) and its distributional effects in explaining consumption-based carbon (ConCO2) emissions, in a framework that also examined the environmental Kuznets curve (EKC) hypothesis, in the context of 19 Sub-Saharan African countries. A composite index was used as measure of FD in a set of data spanning over the period 1995–2017, while controlling for population size (PS), energy intensity (EI) and natural resource rents (Nrr). Given that the variables deviate from expected normal distribution as adjudged by results of pre-estimation tests, the method of moments quantile regression (MM-QR) estimation technique was used to account for distributional effects of FD on ConCO2. Results of the fixed-effect regression based on Driscoll-Kray standard errors (FE-DK) which was validated by three other estimators (fully modified ordinary least squares (FMOLS), dynamic ordinary least squares (DOLS), canonical cointegration regression (CCR)) statistically provided support for FD, PS and EI as drivers of ConCO2. Distributional effects of this show that FD exerts significant positive effect on ConCO2 among countries in the higher quantiles, but insignificant positive effect among those at the lower quantiles. The model provided no support for the EKC hypothesis for SSA; policy implications of these results were presented.
doi_str_mv 10.1007/s11356-022-18671-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2634520160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2688282364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-b2dd767e7f5b47de51a4344344cf853c7f28a1f9d2d386d5822aecffb8e54cc13</originalsourceid><addsrcrecordid>eNp9kc2KFDEUhYMoTjv6Ai4k4MZNNL-VtLtm8A8GXIyui1RyM5OhKtWTWzUw7-EDm7ZbBRdCIJDznXNvOIS8FPyt4Ny-QyGU6RiXkgnXWcHcI7IRndDM6u32MdnwrdZMKK3PyDPEW84l30r7lJwpIyU3wm3Ijx0iIOZyTZcboDHjUvOwLnkufqSQEoQF6ZxoysWXkNtjhHsY5_0EZaFzoWEuuE77g4MNHiHS4OvQBJhyC24qzYVerQO78je--kJ3qebg31NP71ZfljzCyejbzAfM-Jw8SX5EeHG6z8n3jx--XXxml18_fbnYXbKgrFnYIGO0nQWbzKBtBCO8bp9tJyRnVLBJOi_SNsqoXBeNk9JDSGlwYHQIQp2TN8fcfZ3vVsClbysHGEdfYF6xl53SRnLR8Ya-_ge9ndfa9j1QzkknVacbJY9UqDNihdTva558fegF7w-d9cfO-tZZ_6uz3jXTq1P0OkwQ_1h-l9QAdQSwSeUa6t_Z_4n9CR_5pM0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688282364</pqid></control><display><type>article</type><title>Assessing the distributional effects of financial development on consumption-based carbon emissions in Sub-Saharan Africa: a quantile-based analysis</title><source>SpringerNature Journals</source><creator>Anochiwa, Lasbrey I. ; Agbanike, Tobechi F. ; Ikpe, Marius ; Ojike, Richard O. ; Obidike, Paul C.</creator><creatorcontrib>Anochiwa, Lasbrey I. ; Agbanike, Tobechi F. ; Ikpe, Marius ; Ojike, Richard O. ; Obidike, Paul C.</creatorcontrib><description>This study assessed the role of financial development (FD) and its distributional effects in explaining consumption-based carbon (ConCO2) emissions, in a framework that also examined the environmental Kuznets curve (EKC) hypothesis, in the context of 19 Sub-Saharan African countries. A composite index was used as measure of FD in a set of data spanning over the period 1995–2017, while controlling for population size (PS), energy intensity (EI) and natural resource rents (Nrr). Given that the variables deviate from expected normal distribution as adjudged by results of pre-estimation tests, the method of moments quantile regression (MM-QR) estimation technique was used to account for distributional effects of FD on ConCO2. Results of the fixed-effect regression based on Driscoll-Kray standard errors (FE-DK) which was validated by three other estimators (fully modified ordinary least squares (FMOLS), dynamic ordinary least squares (DOLS), canonical cointegration regression (CCR)) statistically provided support for FD, PS and EI as drivers of ConCO2. Distributional effects of this show that FD exerts significant positive effect on ConCO2 among countries in the higher quantiles, but insignificant positive effect among those at the lower quantiles. The model provided no support for the EKC hypothesis for SSA; policy implications of these results were presented.</description><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-022-18671-8</identifier><identifier>PMID: 35220518</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Carbon ; Consumption ; Earth and Environmental Science ; Ecotoxicology ; Emissions ; Energy consumption ; Energy utilization ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental Kuznets curve ; Environmental science ; Hypotheses ; Least squares ; Method of moments ; Natural resources ; Normal distribution ; Population number ; Quantiles ; Regression ; Research Article ; Statistical analysis ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Environmental science and pollution research international, 2022-07, Vol.29 (33), p.49870-49883</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-b2dd767e7f5b47de51a4344344cf853c7f28a1f9d2d386d5822aecffb8e54cc13</citedby><cites>FETCH-LOGICAL-c375t-b2dd767e7f5b47de51a4344344cf853c7f28a1f9d2d386d5822aecffb8e54cc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-022-18671-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-022-18671-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35220518$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anochiwa, Lasbrey I.</creatorcontrib><creatorcontrib>Agbanike, Tobechi F.</creatorcontrib><creatorcontrib>Ikpe, Marius</creatorcontrib><creatorcontrib>Ojike, Richard O.</creatorcontrib><creatorcontrib>Obidike, Paul C.</creatorcontrib><title>Assessing the distributional effects of financial development on consumption-based carbon emissions in Sub-Saharan Africa: a quantile-based analysis</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>This study assessed the role of financial development (FD) and its distributional effects in explaining consumption-based carbon (ConCO2) emissions, in a framework that also examined the environmental Kuznets curve (EKC) hypothesis, in the context of 19 Sub-Saharan African countries. A composite index was used as measure of FD in a set of data spanning over the period 1995–2017, while controlling for population size (PS), energy intensity (EI) and natural resource rents (Nrr). Given that the variables deviate from expected normal distribution as adjudged by results of pre-estimation tests, the method of moments quantile regression (MM-QR) estimation technique was used to account for distributional effects of FD on ConCO2. Results of the fixed-effect regression based on Driscoll-Kray standard errors (FE-DK) which was validated by three other estimators (fully modified ordinary least squares (FMOLS), dynamic ordinary least squares (DOLS), canonical cointegration regression (CCR)) statistically provided support for FD, PS and EI as drivers of ConCO2. Distributional effects of this show that FD exerts significant positive effect on ConCO2 among countries in the higher quantiles, but insignificant positive effect among those at the lower quantiles. The model provided no support for the EKC hypothesis for SSA; policy implications of these results were presented.</description><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Carbon</subject><subject>Consumption</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Emissions</subject><subject>Energy consumption</subject><subject>Energy utilization</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental Kuznets curve</subject><subject>Environmental science</subject><subject>Hypotheses</subject><subject>Least squares</subject><subject>Method of moments</subject><subject>Natural resources</subject><subject>Normal distribution</subject><subject>Population number</subject><subject>Quantiles</subject><subject>Regression</subject><subject>Research Article</subject><subject>Statistical analysis</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc2KFDEUhYMoTjv6Ai4k4MZNNL-VtLtm8A8GXIyui1RyM5OhKtWTWzUw7-EDm7ZbBRdCIJDznXNvOIS8FPyt4Ny-QyGU6RiXkgnXWcHcI7IRndDM6u32MdnwrdZMKK3PyDPEW84l30r7lJwpIyU3wm3Ijx0iIOZyTZcboDHjUvOwLnkufqSQEoQF6ZxoysWXkNtjhHsY5_0EZaFzoWEuuE77g4MNHiHS4OvQBJhyC24qzYVerQO78je--kJ3qebg31NP71ZfljzCyejbzAfM-Jw8SX5EeHG6z8n3jx--XXxml18_fbnYXbKgrFnYIGO0nQWbzKBtBCO8bp9tJyRnVLBJOi_SNsqoXBeNk9JDSGlwYHQIQp2TN8fcfZ3vVsClbysHGEdfYF6xl53SRnLR8Ya-_ge9ndfa9j1QzkknVacbJY9UqDNihdTva558fegF7w-d9cfO-tZZ_6uz3jXTq1P0OkwQ_1h-l9QAdQSwSeUa6t_Z_4n9CR_5pM0</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Anochiwa, Lasbrey I.</creator><creator>Agbanike, Tobechi F.</creator><creator>Ikpe, Marius</creator><creator>Ojike, Richard O.</creator><creator>Obidike, Paul C.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20220701</creationdate><title>Assessing the distributional effects of financial development on consumption-based carbon emissions in Sub-Saharan Africa: a quantile-based analysis</title><author>Anochiwa, Lasbrey I. ; Agbanike, Tobechi F. ; Ikpe, Marius ; Ojike, Richard O. ; Obidike, Paul C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-b2dd767e7f5b47de51a4344344cf853c7f28a1f9d2d386d5822aecffb8e54cc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Carbon</topic><topic>Consumption</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Emissions</topic><topic>Energy consumption</topic><topic>Energy utilization</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental Kuznets curve</topic><topic>Environmental science</topic><topic>Hypotheses</topic><topic>Least squares</topic><topic>Method of moments</topic><topic>Natural resources</topic><topic>Normal distribution</topic><topic>Population number</topic><topic>Quantiles</topic><topic>Regression</topic><topic>Research Article</topic><topic>Statistical analysis</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anochiwa, Lasbrey I.</creatorcontrib><creatorcontrib>Agbanike, Tobechi F.</creatorcontrib><creatorcontrib>Ikpe, Marius</creatorcontrib><creatorcontrib>Ojike, Richard O.</creatorcontrib><creatorcontrib>Obidike, Paul C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anochiwa, Lasbrey I.</au><au>Agbanike, Tobechi F.</au><au>Ikpe, Marius</au><au>Ojike, Richard O.</au><au>Obidike, Paul C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing the distributional effects of financial development on consumption-based carbon emissions in Sub-Saharan Africa: a quantile-based analysis</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>29</volume><issue>33</issue><spage>49870</spage><epage>49883</epage><pages>49870-49883</pages><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>This study assessed the role of financial development (FD) and its distributional effects in explaining consumption-based carbon (ConCO2) emissions, in a framework that also examined the environmental Kuznets curve (EKC) hypothesis, in the context of 19 Sub-Saharan African countries. A composite index was used as measure of FD in a set of data spanning over the period 1995–2017, while controlling for population size (PS), energy intensity (EI) and natural resource rents (Nrr). Given that the variables deviate from expected normal distribution as adjudged by results of pre-estimation tests, the method of moments quantile regression (MM-QR) estimation technique was used to account for distributional effects of FD on ConCO2. Results of the fixed-effect regression based on Driscoll-Kray standard errors (FE-DK) which was validated by three other estimators (fully modified ordinary least squares (FMOLS), dynamic ordinary least squares (DOLS), canonical cointegration regression (CCR)) statistically provided support for FD, PS and EI as drivers of ConCO2. Distributional effects of this show that FD exerts significant positive effect on ConCO2 among countries in the higher quantiles, but insignificant positive effect among those at the lower quantiles. The model provided no support for the EKC hypothesis for SSA; policy implications of these results were presented.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>35220518</pmid><doi>10.1007/s11356-022-18671-8</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0944-1344
ispartof Environmental science and pollution research international, 2022-07, Vol.29 (33), p.49870-49883
issn 0944-1344
1614-7499
language eng
recordid cdi_proquest_miscellaneous_2634520160
source SpringerNature Journals
subjects Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Carbon
Consumption
Earth and Environmental Science
Ecotoxicology
Emissions
Energy consumption
Energy utilization
Environment
Environmental Chemistry
Environmental Health
Environmental Kuznets curve
Environmental science
Hypotheses
Least squares
Method of moments
Natural resources
Normal distribution
Population number
Quantiles
Regression
Research Article
Statistical analysis
Waste Water Technology
Water Management
Water Pollution Control
title Assessing the distributional effects of financial development on consumption-based carbon emissions in Sub-Saharan Africa: a quantile-based analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T01%3A01%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20the%20distributional%20effects%20of%20financial%20development%20on%20consumption-based%20carbon%20emissions%20in%20Sub-Saharan%20Africa:%20a%20quantile-based%20analysis&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Anochiwa,%20Lasbrey%20I.&rft.date=2022-07-01&rft.volume=29&rft.issue=33&rft.spage=49870&rft.epage=49883&rft.pages=49870-49883&rft.issn=0944-1344&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-022-18671-8&rft_dat=%3Cproquest_cross%3E2688282364%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688282364&rft_id=info:pmid/35220518&rfr_iscdi=true