Impact of multiple selective breeding programs on genetic diversity in soybean germplasm
Key message Independent soybean breeding programs shape genetic diversity from unimproved germplasm to modern cultivars in similar ways, but distinct breeding populations retain unique genetic variation, preserving additional diversity. From the domestication of wild soybean ( Glycine soja Sieb. &am...
Gespeichert in:
Veröffentlicht in: | Theoretical and applied genetics 2022-05, Vol.135 (5), p.1591-1602 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1602 |
---|---|
container_issue | 5 |
container_start_page | 1591 |
container_title | Theoretical and applied genetics |
container_volume | 135 |
creator | Viana, João Paulo Gomes Fang, Yuanjin Avalos, Arián Song, Qijian Nelson, Randall Hudson, Matthew E. |
description | Key message
Independent soybean breeding programs shape genetic diversity from unimproved germplasm to modern cultivars in similar ways, but distinct breeding populations retain unique genetic variation, preserving additional diversity.
From the domestication of wild soybean (
Glycine soja
Sieb. & Zucc.), over 3,000 years ago, to the modern soybean (
Glycine max
L. Merr) cultivars that provide much of the world’s oil and protein, soybean populations have undergone fundamental changes. We evaluated the molecular impact of breeding and selection using 391 soybean accessions including US cultivars and their progenitors from the USDA Soybean Germplasm Collection (CGP), plus two new populations specifically developed to increase genetic diversity and high yield in two alternative gene pools: one derived from exotic
G. max
germplasm (AGP) and one derived from
G. soja
(SGP). Reduction in nucleotide genetic diversity (
π
) was observed with selection within gene pools, but artificial selection in the AGP maintained more diversity than in the CGP. The highest F
ST
levels were seen between ancestral and elite lines in all gene pools, but specific nucleotide-level patterns varied between gene pools. Population structure analyses support that independent selection resulted in high-yielding elite lines with similar allelic compositions in the AGP and CGP. SGP, however, produced elite progeny that were well differentiated from, but lower yielding than, CGP elites. Both the AGP and SGP retained a significant number of private alleles that are absent in CGP. We conclude that the genomic diversity shaped by multiple selective breeding programs can result in gene pools of highly productive elite lines with similar allelic compositions in a genome-wide perspective. Breeding programs with different ancestral lines, however, can retain private alleles representing unique genetic diversity. |
doi_str_mv | 10.1007/s00122-022-04056-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2634519833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A704053543</galeid><sourcerecordid>A704053543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-e6e4659123a0e6f3950d05d97bd5f3442298fe6fd63628eec665d15ad87edbfd3</originalsourceid><addsrcrecordid>eNp9kV9rFTEQxYMo9lr9Aj5IwBdfts7m3959LKXaQsEXBd9CNplcUnaTNdkV7rdvllstikgIgZnfOUzmEPK2hYsWoPtYAFrGGtiuAKka-YzsWsFZw5hgz8kOarmRnWRn5FUp9wDAJPCX5IxLxkAItSPfb6fZ2IUmT6d1XMI8Ii04ol3CT6RDRnQhHuic0yGbqdAU6QEjLsFSV4lcwnKkIdKSjgOarZmneTRlek1eeDMWfPP4npNvn66_Xt00d18-315d3jVWCLY0qFAo2beMG0DleS_BgXR9NzjpeUVYv_e14RRXbI9olZKulcbtO3SDd_ycfDj51hF_rFgWPYVicRxNxLQWzRQXsu33nFf0_V_ofVpzrNNVSoleSqHEE3UwI-oQfVqysZupvuy2PXMpNq-Lf1D1OJyCTRF9qPU_BOwksDmVktHrOYfJ5KNuQW9x6lOcGra7xallFb17nHgdJnS_Jb_yqwA_AaW2Yl3-05f-Y_sAtv6o-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2664955464</pqid></control><display><type>article</type><title>Impact of multiple selective breeding programs on genetic diversity in soybean germplasm</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Viana, João Paulo Gomes ; Fang, Yuanjin ; Avalos, Arián ; Song, Qijian ; Nelson, Randall ; Hudson, Matthew E.</creator><creatorcontrib>Viana, João Paulo Gomes ; Fang, Yuanjin ; Avalos, Arián ; Song, Qijian ; Nelson, Randall ; Hudson, Matthew E.</creatorcontrib><description>Key message
Independent soybean breeding programs shape genetic diversity from unimproved germplasm to modern cultivars in similar ways, but distinct breeding populations retain unique genetic variation, preserving additional diversity.
From the domestication of wild soybean (
Glycine soja
Sieb. & Zucc.), over 3,000 years ago, to the modern soybean (
Glycine max
L. Merr) cultivars that provide much of the world’s oil and protein, soybean populations have undergone fundamental changes. We evaluated the molecular impact of breeding and selection using 391 soybean accessions including US cultivars and their progenitors from the USDA Soybean Germplasm Collection (CGP), plus two new populations specifically developed to increase genetic diversity and high yield in two alternative gene pools: one derived from exotic
G. max
germplasm (AGP) and one derived from
G. soja
(SGP). Reduction in nucleotide genetic diversity (
π
) was observed with selection within gene pools, but artificial selection in the AGP maintained more diversity than in the CGP. The highest F
ST
levels were seen between ancestral and elite lines in all gene pools, but specific nucleotide-level patterns varied between gene pools. Population structure analyses support that independent selection resulted in high-yielding elite lines with similar allelic compositions in the AGP and CGP. SGP, however, produced elite progeny that were well differentiated from, but lower yielding than, CGP elites. Both the AGP and SGP retained a significant number of private alleles that are absent in CGP. We conclude that the genomic diversity shaped by multiple selective breeding programs can result in gene pools of highly productive elite lines with similar allelic compositions in a genome-wide perspective. Breeding programs with different ancestral lines, however, can retain private alleles representing unique genetic diversity.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-022-04056-5</identifier><identifier>PMID: 35220446</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agricultural research ; Agriculture ; Alleles ; Biochemistry ; Biological diversity ; Biomedical and Life Sciences ; Biotechnology ; Cultivars ; Domestication ; Fabaceae - genetics ; Genetic aspects ; Genetic diversity ; Genetic Variation ; Genotype ; Germplasm ; Glycine max - genetics ; Glycine soja ; Life Sciences ; Methods ; Nucleotides ; Original Article ; Plant Biochemistry ; Plant Breeding ; Plant Breeding/Biotechnology ; Plant Genetics and Genomics ; Polymorphism, Single Nucleotide ; Population genetics ; Population structure ; Production processes ; Selective Breeding ; Soybean ; Soybeans</subject><ispartof>Theoretical and applied genetics, 2022-05, Vol.135 (5), p.1591-1602</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-e6e4659123a0e6f3950d05d97bd5f3442298fe6fd63628eec665d15ad87edbfd3</citedby><cites>FETCH-LOGICAL-c442t-e6e4659123a0e6f3950d05d97bd5f3442298fe6fd63628eec665d15ad87edbfd3</cites><orcidid>0000-0001-9482-1763 ; 0000-0002-4737-0936 ; 0000-0002-4011-3099 ; 0000-0002-9217-9604</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00122-022-04056-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00122-022-04056-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35220446$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Viana, João Paulo Gomes</creatorcontrib><creatorcontrib>Fang, Yuanjin</creatorcontrib><creatorcontrib>Avalos, Arián</creatorcontrib><creatorcontrib>Song, Qijian</creatorcontrib><creatorcontrib>Nelson, Randall</creatorcontrib><creatorcontrib>Hudson, Matthew E.</creatorcontrib><title>Impact of multiple selective breeding programs on genetic diversity in soybean germplasm</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>Key message
Independent soybean breeding programs shape genetic diversity from unimproved germplasm to modern cultivars in similar ways, but distinct breeding populations retain unique genetic variation, preserving additional diversity.
From the domestication of wild soybean (
Glycine soja
Sieb. & Zucc.), over 3,000 years ago, to the modern soybean (
Glycine max
L. Merr) cultivars that provide much of the world’s oil and protein, soybean populations have undergone fundamental changes. We evaluated the molecular impact of breeding and selection using 391 soybean accessions including US cultivars and their progenitors from the USDA Soybean Germplasm Collection (CGP), plus two new populations specifically developed to increase genetic diversity and high yield in two alternative gene pools: one derived from exotic
G. max
germplasm (AGP) and one derived from
G. soja
(SGP). Reduction in nucleotide genetic diversity (
π
) was observed with selection within gene pools, but artificial selection in the AGP maintained more diversity than in the CGP. The highest F
ST
levels were seen between ancestral and elite lines in all gene pools, but specific nucleotide-level patterns varied between gene pools. Population structure analyses support that independent selection resulted in high-yielding elite lines with similar allelic compositions in the AGP and CGP. SGP, however, produced elite progeny that were well differentiated from, but lower yielding than, CGP elites. Both the AGP and SGP retained a significant number of private alleles that are absent in CGP. We conclude that the genomic diversity shaped by multiple selective breeding programs can result in gene pools of highly productive elite lines with similar allelic compositions in a genome-wide perspective. Breeding programs with different ancestral lines, however, can retain private alleles representing unique genetic diversity.</description><subject>Agricultural research</subject><subject>Agriculture</subject><subject>Alleles</subject><subject>Biochemistry</subject><subject>Biological diversity</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cultivars</subject><subject>Domestication</subject><subject>Fabaceae - genetics</subject><subject>Genetic aspects</subject><subject>Genetic diversity</subject><subject>Genetic Variation</subject><subject>Genotype</subject><subject>Germplasm</subject><subject>Glycine max - genetics</subject><subject>Glycine soja</subject><subject>Life Sciences</subject><subject>Methods</subject><subject>Nucleotides</subject><subject>Original Article</subject><subject>Plant Biochemistry</subject><subject>Plant Breeding</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Genetics and Genomics</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Population genetics</subject><subject>Population structure</subject><subject>Production processes</subject><subject>Selective Breeding</subject><subject>Soybean</subject><subject>Soybeans</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kV9rFTEQxYMo9lr9Aj5IwBdfts7m3959LKXaQsEXBd9CNplcUnaTNdkV7rdvllstikgIgZnfOUzmEPK2hYsWoPtYAFrGGtiuAKka-YzsWsFZw5hgz8kOarmRnWRn5FUp9wDAJPCX5IxLxkAItSPfb6fZ2IUmT6d1XMI8Ii04ol3CT6RDRnQhHuic0yGbqdAU6QEjLsFSV4lcwnKkIdKSjgOarZmneTRlek1eeDMWfPP4npNvn66_Xt00d18-315d3jVWCLY0qFAo2beMG0DleS_BgXR9NzjpeUVYv_e14RRXbI9olZKulcbtO3SDd_ycfDj51hF_rFgWPYVicRxNxLQWzRQXsu33nFf0_V_ofVpzrNNVSoleSqHEE3UwI-oQfVqysZupvuy2PXMpNq-Lf1D1OJyCTRF9qPU_BOwksDmVktHrOYfJ5KNuQW9x6lOcGra7xallFb17nHgdJnS_Jb_yqwA_AaW2Yl3-05f-Y_sAtv6o-Q</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Viana, João Paulo Gomes</creator><creator>Fang, Yuanjin</creator><creator>Avalos, Arián</creator><creator>Song, Qijian</creator><creator>Nelson, Randall</creator><creator>Hudson, Matthew E.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9482-1763</orcidid><orcidid>https://orcid.org/0000-0002-4737-0936</orcidid><orcidid>https://orcid.org/0000-0002-4011-3099</orcidid><orcidid>https://orcid.org/0000-0002-9217-9604</orcidid></search><sort><creationdate>20220501</creationdate><title>Impact of multiple selective breeding programs on genetic diversity in soybean germplasm</title><author>Viana, João Paulo Gomes ; Fang, Yuanjin ; Avalos, Arián ; Song, Qijian ; Nelson, Randall ; Hudson, Matthew E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-e6e4659123a0e6f3950d05d97bd5f3442298fe6fd63628eec665d15ad87edbfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agricultural research</topic><topic>Agriculture</topic><topic>Alleles</topic><topic>Biochemistry</topic><topic>Biological diversity</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cultivars</topic><topic>Domestication</topic><topic>Fabaceae - genetics</topic><topic>Genetic aspects</topic><topic>Genetic diversity</topic><topic>Genetic Variation</topic><topic>Genotype</topic><topic>Germplasm</topic><topic>Glycine max - genetics</topic><topic>Glycine soja</topic><topic>Life Sciences</topic><topic>Methods</topic><topic>Nucleotides</topic><topic>Original Article</topic><topic>Plant Biochemistry</topic><topic>Plant Breeding</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Genetics and Genomics</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Population genetics</topic><topic>Population structure</topic><topic>Production processes</topic><topic>Selective Breeding</topic><topic>Soybean</topic><topic>Soybeans</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Viana, João Paulo Gomes</creatorcontrib><creatorcontrib>Fang, Yuanjin</creatorcontrib><creatorcontrib>Avalos, Arián</creatorcontrib><creatorcontrib>Song, Qijian</creatorcontrib><creatorcontrib>Nelson, Randall</creatorcontrib><creatorcontrib>Hudson, Matthew E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Viana, João Paulo Gomes</au><au>Fang, Yuanjin</au><au>Avalos, Arián</au><au>Song, Qijian</au><au>Nelson, Randall</au><au>Hudson, Matthew E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of multiple selective breeding programs on genetic diversity in soybean germplasm</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>135</volume><issue>5</issue><spage>1591</spage><epage>1602</epage><pages>1591-1602</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><abstract>Key message
Independent soybean breeding programs shape genetic diversity from unimproved germplasm to modern cultivars in similar ways, but distinct breeding populations retain unique genetic variation, preserving additional diversity.
From the domestication of wild soybean (
Glycine soja
Sieb. & Zucc.), over 3,000 years ago, to the modern soybean (
Glycine max
L. Merr) cultivars that provide much of the world’s oil and protein, soybean populations have undergone fundamental changes. We evaluated the molecular impact of breeding and selection using 391 soybean accessions including US cultivars and their progenitors from the USDA Soybean Germplasm Collection (CGP), plus two new populations specifically developed to increase genetic diversity and high yield in two alternative gene pools: one derived from exotic
G. max
germplasm (AGP) and one derived from
G. soja
(SGP). Reduction in nucleotide genetic diversity (
π
) was observed with selection within gene pools, but artificial selection in the AGP maintained more diversity than in the CGP. The highest F
ST
levels were seen between ancestral and elite lines in all gene pools, but specific nucleotide-level patterns varied between gene pools. Population structure analyses support that independent selection resulted in high-yielding elite lines with similar allelic compositions in the AGP and CGP. SGP, however, produced elite progeny that were well differentiated from, but lower yielding than, CGP elites. Both the AGP and SGP retained a significant number of private alleles that are absent in CGP. We conclude that the genomic diversity shaped by multiple selective breeding programs can result in gene pools of highly productive elite lines with similar allelic compositions in a genome-wide perspective. Breeding programs with different ancestral lines, however, can retain private alleles representing unique genetic diversity.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>35220446</pmid><doi>10.1007/s00122-022-04056-5</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9482-1763</orcidid><orcidid>https://orcid.org/0000-0002-4737-0936</orcidid><orcidid>https://orcid.org/0000-0002-4011-3099</orcidid><orcidid>https://orcid.org/0000-0002-9217-9604</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5752 |
ispartof | Theoretical and applied genetics, 2022-05, Vol.135 (5), p.1591-1602 |
issn | 0040-5752 1432-2242 |
language | eng |
recordid | cdi_proquest_miscellaneous_2634519833 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Agricultural research Agriculture Alleles Biochemistry Biological diversity Biomedical and Life Sciences Biotechnology Cultivars Domestication Fabaceae - genetics Genetic aspects Genetic diversity Genetic Variation Genotype Germplasm Glycine max - genetics Glycine soja Life Sciences Methods Nucleotides Original Article Plant Biochemistry Plant Breeding Plant Breeding/Biotechnology Plant Genetics and Genomics Polymorphism, Single Nucleotide Population genetics Population structure Production processes Selective Breeding Soybean Soybeans |
title | Impact of multiple selective breeding programs on genetic diversity in soybean germplasm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T12%3A55%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20multiple%20selective%20breeding%20programs%20on%20genetic%20diversity%20in%20soybean%20germplasm&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Viana,%20Jo%C3%A3o%20Paulo%20Gomes&rft.date=2022-05-01&rft.volume=135&rft.issue=5&rft.spage=1591&rft.epage=1602&rft.pages=1591-1602&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-022-04056-5&rft_dat=%3Cgale_proqu%3EA704053543%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2664955464&rft_id=info:pmid/35220446&rft_galeid=A704053543&rfr_iscdi=true |