Enhancing sepsis management through machine learning techniques: A review
Sepsis is a major public health problem and a leading cause of death in the world, where delay in the beginning of treatment, along with clinical guidelines non-adherence have been proved to be associated with higher mortality. Machine Learning is increasingly being adopted in developing innovative...
Gespeichert in:
Veröffentlicht in: | Medicina intensiva 2022-03, Vol.46 (3), p.140-156 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 156 |
---|---|
container_issue | 3 |
container_start_page | 140 |
container_title | Medicina intensiva |
container_volume | 46 |
creator | Ocampo-Quintero, N Vidal-Cortés, P Del Río Carbajo, L Fdez-Riverola, F Reboiro-Jato, M Glez-Peña, D |
description | Sepsis is a major public health problem and a leading cause of death in the world, where delay in the beginning of treatment, along with clinical guidelines non-adherence have been proved to be associated with higher mortality. Machine Learning is increasingly being adopted in developing innovative Clinical Decision Support Systems in many areas of medicine, showing a great potential for automatic prediction of diverse patient conditions, as well as assistance in clinical decision making. In this context, this work conducts a narrative review to provide an overview of how specific Machine Learning techniques can be used to improve sepsis management, discussing the main tasks addressed, the most popular methods and techniques, as well as the obtained results, in terms of both intelligent system accuracy and clinical outcomes improvement. |
doi_str_mv | 10.1016/j.medine.2020.04.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2634518655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2634518655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c186t-16b1796938e0340258efb00f1bf9bc8f12c1ba7132118c5ce846188dc5ae20d33</originalsourceid><addsrcrecordid>eNpNkE1PwzAMhiMEYtPYP0CoRy4tcdK0GbdpGjBpEhc4R2nmrp3adCQtiH9Pqg2EL7bs118PIbdAE6CQPRySFne1xYRRRhOaJhTEBZkyyHkscpZf_osnZO79gQbLBEjg12TCBWNAKZ-SzdpW2pra7iOPR1_7qNVW77FF20d95bphX4WUqcKyqEHt7Cjt0VS2_hjQP0bLyOFnjV835KrUjcf52c_I-9P6bfUSb1-fN6vlNjYgsz6GrIB8kS24RMpTyoTEsqC0hKJcFEaWwAwUOgfOAKQRBmWagZQ7IzQyuuN8Ru5Pc4-uGy_oVVt7g02jLXaDVyzjafgzEyJI05PUuM57h6U6urrV7lsBVSNHdVAnjmrkqGiqAsfQdnfeMBSh_Nf0S43_AJjKb5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2634518655</pqid></control><display><type>article</type><title>Enhancing sepsis management through machine learning techniques: A review</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>Alma/SFX Local Collection</source><creator>Ocampo-Quintero, N ; Vidal-Cortés, P ; Del Río Carbajo, L ; Fdez-Riverola, F ; Reboiro-Jato, M ; Glez-Peña, D</creator><creatorcontrib>Ocampo-Quintero, N ; Vidal-Cortés, P ; Del Río Carbajo, L ; Fdez-Riverola, F ; Reboiro-Jato, M ; Glez-Peña, D</creatorcontrib><description>Sepsis is a major public health problem and a leading cause of death in the world, where delay in the beginning of treatment, along with clinical guidelines non-adherence have been proved to be associated with higher mortality. Machine Learning is increasingly being adopted in developing innovative Clinical Decision Support Systems in many areas of medicine, showing a great potential for automatic prediction of diverse patient conditions, as well as assistance in clinical decision making. In this context, this work conducts a narrative review to provide an overview of how specific Machine Learning techniques can be used to improve sepsis management, discussing the main tasks addressed, the most popular methods and techniques, as well as the obtained results, in terms of both intelligent system accuracy and clinical outcomes improvement.</description><identifier>ISSN: 2173-5727</identifier><identifier>EISSN: 2173-5727</identifier><identifier>EISSN: 1578-6749</identifier><identifier>DOI: 10.1016/j.medine.2020.04.015</identifier><identifier>PMID: 35221003</identifier><language>eng</language><publisher>Spain</publisher><subject>Clinical Decision-Making ; Humans ; Machine Learning ; Sepsis - diagnosis ; Sepsis - therapy</subject><ispartof>Medicina intensiva, 2022-03, Vol.46 (3), p.140-156</ispartof><rights>Copyright © 2020 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c186t-16b1796938e0340258efb00f1bf9bc8f12c1ba7132118c5ce846188dc5ae20d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35221003$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ocampo-Quintero, N</creatorcontrib><creatorcontrib>Vidal-Cortés, P</creatorcontrib><creatorcontrib>Del Río Carbajo, L</creatorcontrib><creatorcontrib>Fdez-Riverola, F</creatorcontrib><creatorcontrib>Reboiro-Jato, M</creatorcontrib><creatorcontrib>Glez-Peña, D</creatorcontrib><title>Enhancing sepsis management through machine learning techniques: A review</title><title>Medicina intensiva</title><addtitle>Med Intensiva (Engl Ed)</addtitle><description>Sepsis is a major public health problem and a leading cause of death in the world, where delay in the beginning of treatment, along with clinical guidelines non-adherence have been proved to be associated with higher mortality. Machine Learning is increasingly being adopted in developing innovative Clinical Decision Support Systems in many areas of medicine, showing a great potential for automatic prediction of diverse patient conditions, as well as assistance in clinical decision making. In this context, this work conducts a narrative review to provide an overview of how specific Machine Learning techniques can be used to improve sepsis management, discussing the main tasks addressed, the most popular methods and techniques, as well as the obtained results, in terms of both intelligent system accuracy and clinical outcomes improvement.</description><subject>Clinical Decision-Making</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Sepsis - diagnosis</subject><subject>Sepsis - therapy</subject><issn>2173-5727</issn><issn>2173-5727</issn><issn>1578-6749</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkE1PwzAMhiMEYtPYP0CoRy4tcdK0GbdpGjBpEhc4R2nmrp3adCQtiH9Pqg2EL7bs118PIbdAE6CQPRySFne1xYRRRhOaJhTEBZkyyHkscpZf_osnZO79gQbLBEjg12TCBWNAKZ-SzdpW2pra7iOPR1_7qNVW77FF20d95bphX4WUqcKyqEHt7Cjt0VS2_hjQP0bLyOFnjV835KrUjcf52c_I-9P6bfUSb1-fN6vlNjYgsz6GrIB8kS24RMpTyoTEsqC0hKJcFEaWwAwUOgfOAKQRBmWagZQ7IzQyuuN8Ru5Pc4-uGy_oVVt7g02jLXaDVyzjafgzEyJI05PUuM57h6U6urrV7lsBVSNHdVAnjmrkqGiqAsfQdnfeMBSh_Nf0S43_AJjKb5g</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Ocampo-Quintero, N</creator><creator>Vidal-Cortés, P</creator><creator>Del Río Carbajo, L</creator><creator>Fdez-Riverola, F</creator><creator>Reboiro-Jato, M</creator><creator>Glez-Peña, D</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202203</creationdate><title>Enhancing sepsis management through machine learning techniques: A review</title><author>Ocampo-Quintero, N ; Vidal-Cortés, P ; Del Río Carbajo, L ; Fdez-Riverola, F ; Reboiro-Jato, M ; Glez-Peña, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c186t-16b1796938e0340258efb00f1bf9bc8f12c1ba7132118c5ce846188dc5ae20d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Clinical Decision-Making</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Sepsis - diagnosis</topic><topic>Sepsis - therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ocampo-Quintero, N</creatorcontrib><creatorcontrib>Vidal-Cortés, P</creatorcontrib><creatorcontrib>Del Río Carbajo, L</creatorcontrib><creatorcontrib>Fdez-Riverola, F</creatorcontrib><creatorcontrib>Reboiro-Jato, M</creatorcontrib><creatorcontrib>Glez-Peña, D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medicina intensiva</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ocampo-Quintero, N</au><au>Vidal-Cortés, P</au><au>Del Río Carbajo, L</au><au>Fdez-Riverola, F</au><au>Reboiro-Jato, M</au><au>Glez-Peña, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing sepsis management through machine learning techniques: A review</atitle><jtitle>Medicina intensiva</jtitle><addtitle>Med Intensiva (Engl Ed)</addtitle><date>2022-03</date><risdate>2022</risdate><volume>46</volume><issue>3</issue><spage>140</spage><epage>156</epage><pages>140-156</pages><issn>2173-5727</issn><eissn>2173-5727</eissn><eissn>1578-6749</eissn><abstract>Sepsis is a major public health problem and a leading cause of death in the world, where delay in the beginning of treatment, along with clinical guidelines non-adherence have been proved to be associated with higher mortality. Machine Learning is increasingly being adopted in developing innovative Clinical Decision Support Systems in many areas of medicine, showing a great potential for automatic prediction of diverse patient conditions, as well as assistance in clinical decision making. In this context, this work conducts a narrative review to provide an overview of how specific Machine Learning techniques can be used to improve sepsis management, discussing the main tasks addressed, the most popular methods and techniques, as well as the obtained results, in terms of both intelligent system accuracy and clinical outcomes improvement.</abstract><cop>Spain</cop><pmid>35221003</pmid><doi>10.1016/j.medine.2020.04.015</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2173-5727 |
ispartof | Medicina intensiva, 2022-03, Vol.46 (3), p.140-156 |
issn | 2173-5727 2173-5727 1578-6749 |
language | eng |
recordid | cdi_proquest_miscellaneous_2634518655 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present); Alma/SFX Local Collection |
subjects | Clinical Decision-Making Humans Machine Learning Sepsis - diagnosis Sepsis - therapy |
title | Enhancing sepsis management through machine learning techniques: A review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A40%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20sepsis%20management%20through%20machine%20learning%20techniques:%20A%20review&rft.jtitle=Medicina%20intensiva&rft.au=Ocampo-Quintero,%20N&rft.date=2022-03&rft.volume=46&rft.issue=3&rft.spage=140&rft.epage=156&rft.pages=140-156&rft.issn=2173-5727&rft.eissn=2173-5727&rft_id=info:doi/10.1016/j.medine.2020.04.015&rft_dat=%3Cproquest_cross%3E2634518655%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2634518655&rft_id=info:pmid/35221003&rfr_iscdi=true |