Enhancing sepsis management through machine learning techniques: A review

Sepsis is a major public health problem and a leading cause of death in the world, where delay in the beginning of treatment, along with clinical guidelines non-adherence have been proved to be associated with higher mortality. Machine Learning is increasingly being adopted in developing innovative...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medicina intensiva 2022-03, Vol.46 (3), p.140-156
Hauptverfasser: Ocampo-Quintero, N, Vidal-Cortés, P, Del Río Carbajo, L, Fdez-Riverola, F, Reboiro-Jato, M, Glez-Peña, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 156
container_issue 3
container_start_page 140
container_title Medicina intensiva
container_volume 46
creator Ocampo-Quintero, N
Vidal-Cortés, P
Del Río Carbajo, L
Fdez-Riverola, F
Reboiro-Jato, M
Glez-Peña, D
description Sepsis is a major public health problem and a leading cause of death in the world, where delay in the beginning of treatment, along with clinical guidelines non-adherence have been proved to be associated with higher mortality. Machine Learning is increasingly being adopted in developing innovative Clinical Decision Support Systems in many areas of medicine, showing a great potential for automatic prediction of diverse patient conditions, as well as assistance in clinical decision making. In this context, this work conducts a narrative review to provide an overview of how specific Machine Learning techniques can be used to improve sepsis management, discussing the main tasks addressed, the most popular methods and techniques, as well as the obtained results, in terms of both intelligent system accuracy and clinical outcomes improvement.
doi_str_mv 10.1016/j.medine.2020.04.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2634518655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2634518655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c186t-16b1796938e0340258efb00f1bf9bc8f12c1ba7132118c5ce846188dc5ae20d33</originalsourceid><addsrcrecordid>eNpNkE1PwzAMhiMEYtPYP0CoRy4tcdK0GbdpGjBpEhc4R2nmrp3adCQtiH9Pqg2EL7bs118PIbdAE6CQPRySFne1xYRRRhOaJhTEBZkyyHkscpZf_osnZO79gQbLBEjg12TCBWNAKZ-SzdpW2pra7iOPR1_7qNVW77FF20d95bphX4WUqcKyqEHt7Cjt0VS2_hjQP0bLyOFnjV835KrUjcf52c_I-9P6bfUSb1-fN6vlNjYgsz6GrIB8kS24RMpTyoTEsqC0hKJcFEaWwAwUOgfOAKQRBmWagZQ7IzQyuuN8Ru5Pc4-uGy_oVVt7g02jLXaDVyzjafgzEyJI05PUuM57h6U6urrV7lsBVSNHdVAnjmrkqGiqAsfQdnfeMBSh_Nf0S43_AJjKb5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2634518655</pqid></control><display><type>article</type><title>Enhancing sepsis management through machine learning techniques: A review</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>Alma/SFX Local Collection</source><creator>Ocampo-Quintero, N ; Vidal-Cortés, P ; Del Río Carbajo, L ; Fdez-Riverola, F ; Reboiro-Jato, M ; Glez-Peña, D</creator><creatorcontrib>Ocampo-Quintero, N ; Vidal-Cortés, P ; Del Río Carbajo, L ; Fdez-Riverola, F ; Reboiro-Jato, M ; Glez-Peña, D</creatorcontrib><description>Sepsis is a major public health problem and a leading cause of death in the world, where delay in the beginning of treatment, along with clinical guidelines non-adherence have been proved to be associated with higher mortality. Machine Learning is increasingly being adopted in developing innovative Clinical Decision Support Systems in many areas of medicine, showing a great potential for automatic prediction of diverse patient conditions, as well as assistance in clinical decision making. In this context, this work conducts a narrative review to provide an overview of how specific Machine Learning techniques can be used to improve sepsis management, discussing the main tasks addressed, the most popular methods and techniques, as well as the obtained results, in terms of both intelligent system accuracy and clinical outcomes improvement.</description><identifier>ISSN: 2173-5727</identifier><identifier>EISSN: 2173-5727</identifier><identifier>EISSN: 1578-6749</identifier><identifier>DOI: 10.1016/j.medine.2020.04.015</identifier><identifier>PMID: 35221003</identifier><language>eng</language><publisher>Spain</publisher><subject>Clinical Decision-Making ; Humans ; Machine Learning ; Sepsis - diagnosis ; Sepsis - therapy</subject><ispartof>Medicina intensiva, 2022-03, Vol.46 (3), p.140-156</ispartof><rights>Copyright © 2020 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c186t-16b1796938e0340258efb00f1bf9bc8f12c1ba7132118c5ce846188dc5ae20d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35221003$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ocampo-Quintero, N</creatorcontrib><creatorcontrib>Vidal-Cortés, P</creatorcontrib><creatorcontrib>Del Río Carbajo, L</creatorcontrib><creatorcontrib>Fdez-Riverola, F</creatorcontrib><creatorcontrib>Reboiro-Jato, M</creatorcontrib><creatorcontrib>Glez-Peña, D</creatorcontrib><title>Enhancing sepsis management through machine learning techniques: A review</title><title>Medicina intensiva</title><addtitle>Med Intensiva (Engl Ed)</addtitle><description>Sepsis is a major public health problem and a leading cause of death in the world, where delay in the beginning of treatment, along with clinical guidelines non-adherence have been proved to be associated with higher mortality. Machine Learning is increasingly being adopted in developing innovative Clinical Decision Support Systems in many areas of medicine, showing a great potential for automatic prediction of diverse patient conditions, as well as assistance in clinical decision making. In this context, this work conducts a narrative review to provide an overview of how specific Machine Learning techniques can be used to improve sepsis management, discussing the main tasks addressed, the most popular methods and techniques, as well as the obtained results, in terms of both intelligent system accuracy and clinical outcomes improvement.</description><subject>Clinical Decision-Making</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Sepsis - diagnosis</subject><subject>Sepsis - therapy</subject><issn>2173-5727</issn><issn>2173-5727</issn><issn>1578-6749</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkE1PwzAMhiMEYtPYP0CoRy4tcdK0GbdpGjBpEhc4R2nmrp3adCQtiH9Pqg2EL7bs118PIbdAE6CQPRySFne1xYRRRhOaJhTEBZkyyHkscpZf_osnZO79gQbLBEjg12TCBWNAKZ-SzdpW2pra7iOPR1_7qNVW77FF20d95bphX4WUqcKyqEHt7Cjt0VS2_hjQP0bLyOFnjV835KrUjcf52c_I-9P6bfUSb1-fN6vlNjYgsz6GrIB8kS24RMpTyoTEsqC0hKJcFEaWwAwUOgfOAKQRBmWagZQ7IzQyuuN8Ru5Pc4-uGy_oVVt7g02jLXaDVyzjafgzEyJI05PUuM57h6U6urrV7lsBVSNHdVAnjmrkqGiqAsfQdnfeMBSh_Nf0S43_AJjKb5g</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Ocampo-Quintero, N</creator><creator>Vidal-Cortés, P</creator><creator>Del Río Carbajo, L</creator><creator>Fdez-Riverola, F</creator><creator>Reboiro-Jato, M</creator><creator>Glez-Peña, D</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202203</creationdate><title>Enhancing sepsis management through machine learning techniques: A review</title><author>Ocampo-Quintero, N ; Vidal-Cortés, P ; Del Río Carbajo, L ; Fdez-Riverola, F ; Reboiro-Jato, M ; Glez-Peña, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c186t-16b1796938e0340258efb00f1bf9bc8f12c1ba7132118c5ce846188dc5ae20d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Clinical Decision-Making</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Sepsis - diagnosis</topic><topic>Sepsis - therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ocampo-Quintero, N</creatorcontrib><creatorcontrib>Vidal-Cortés, P</creatorcontrib><creatorcontrib>Del Río Carbajo, L</creatorcontrib><creatorcontrib>Fdez-Riverola, F</creatorcontrib><creatorcontrib>Reboiro-Jato, M</creatorcontrib><creatorcontrib>Glez-Peña, D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medicina intensiva</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ocampo-Quintero, N</au><au>Vidal-Cortés, P</au><au>Del Río Carbajo, L</au><au>Fdez-Riverola, F</au><au>Reboiro-Jato, M</au><au>Glez-Peña, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing sepsis management through machine learning techniques: A review</atitle><jtitle>Medicina intensiva</jtitle><addtitle>Med Intensiva (Engl Ed)</addtitle><date>2022-03</date><risdate>2022</risdate><volume>46</volume><issue>3</issue><spage>140</spage><epage>156</epage><pages>140-156</pages><issn>2173-5727</issn><eissn>2173-5727</eissn><eissn>1578-6749</eissn><abstract>Sepsis is a major public health problem and a leading cause of death in the world, where delay in the beginning of treatment, along with clinical guidelines non-adherence have been proved to be associated with higher mortality. Machine Learning is increasingly being adopted in developing innovative Clinical Decision Support Systems in many areas of medicine, showing a great potential for automatic prediction of diverse patient conditions, as well as assistance in clinical decision making. In this context, this work conducts a narrative review to provide an overview of how specific Machine Learning techniques can be used to improve sepsis management, discussing the main tasks addressed, the most popular methods and techniques, as well as the obtained results, in terms of both intelligent system accuracy and clinical outcomes improvement.</abstract><cop>Spain</cop><pmid>35221003</pmid><doi>10.1016/j.medine.2020.04.015</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2173-5727
ispartof Medicina intensiva, 2022-03, Vol.46 (3), p.140-156
issn 2173-5727
2173-5727
1578-6749
language eng
recordid cdi_proquest_miscellaneous_2634518655
source MEDLINE; ScienceDirect Journals (5 years ago - present); Alma/SFX Local Collection
subjects Clinical Decision-Making
Humans
Machine Learning
Sepsis - diagnosis
Sepsis - therapy
title Enhancing sepsis management through machine learning techniques: A review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A40%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20sepsis%20management%20through%20machine%20learning%20techniques:%20A%20review&rft.jtitle=Medicina%20intensiva&rft.au=Ocampo-Quintero,%20N&rft.date=2022-03&rft.volume=46&rft.issue=3&rft.spage=140&rft.epage=156&rft.pages=140-156&rft.issn=2173-5727&rft.eissn=2173-5727&rft_id=info:doi/10.1016/j.medine.2020.04.015&rft_dat=%3Cproquest_cross%3E2634518655%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2634518655&rft_id=info:pmid/35221003&rfr_iscdi=true