RBFN restoration of nonlinearly degraded images
We investigate a technique for image restoration using nonlinear networks based on radial basis functions. The technique is also based on the concept of training or learning by examples. When trained properly, these networks are used as spatially invariant feedforward nonlinear filters that can perf...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 1996-06, Vol.5 (6), p.964-975 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 975 |
---|---|
container_issue | 6 |
container_start_page | 964 |
container_title | IEEE transactions on image processing |
container_volume | 5 |
creator | Inhyok Cha Kassam, S.A. |
description | We investigate a technique for image restoration using nonlinear networks based on radial basis functions. The technique is also based on the concept of training or learning by examples. When trained properly, these networks are used as spatially invariant feedforward nonlinear filters that can perform restoration of images degraded by nonlinear degradation mechanisms. We examine a number of network structures including the Gaussian radial basis function network (RBFN) and some extensions of it, as well as a number of training algorithms including the stochastic gradient (SG) algorithm that we have proposed earlier. We also propose a modified structure based on the Gaussian-mixture model and a learning algorithm for the modified network. Experimental results indicate that the radial basis function network and its extensions can be very useful in restoring images degraded by nonlinear distortion and noise. |
doi_str_mv | 10.1109/83.503912 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_26343173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>503912</ieee_id><sourcerecordid>28570787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-4b22d2f279321d9ba11aaafeeb3f70a003259d2d9a167bf25fdf22c85c41571f3</originalsourceid><addsrcrecordid>eNqF0M9LwzAUB_AgipvTg1cP0pPioVtefjTNUYdTYSiInkvavIxK185kO-y_N9KiNz0lkM_7kvcl5BzoFIDqWc6nknIN7ICMQQtIKRXsMN6pVKkCoUfkJIQPSkFIyI7JCHKWS8jFmMxe7xbPicew7bzZ1l2bdC5pu7apWzS-2ScWV95YtEm9NisMp-TImSbg2XBOyPvi_m3-mC5fHp7mt8u04hnfpqJkzDLHlOYMrC4NgDHGIZbcKWoo5Uxqy6w2kKnSMemsY6zKZSVAKnB8Qq773I3vPnfxe8W6DhU2jWmx24VCccEUKK6jvPpTxk0VVbn6H2Zc8BgZ4U0PK9-F4NEVGx-39_sCaPFdeJHzoi882sshdFeu0f7KoeEILnpQI-LP8zD9BYvrgPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26343173</pqid></control><display><type>article</type><title>RBFN restoration of nonlinearly degraded images</title><source>IEEE Electronic Library (IEL)</source><creator>Inhyok Cha ; Kassam, S.A.</creator><creatorcontrib>Inhyok Cha ; Kassam, S.A.</creatorcontrib><description>We investigate a technique for image restoration using nonlinear networks based on radial basis functions. The technique is also based on the concept of training or learning by examples. When trained properly, these networks are used as spatially invariant feedforward nonlinear filters that can perform restoration of images degraded by nonlinear degradation mechanisms. We examine a number of network structures including the Gaussian radial basis function network (RBFN) and some extensions of it, as well as a number of training algorithms including the stochastic gradient (SG) algorithm that we have proposed earlier. We also propose a modified structure based on the Gaussian-mixture model and a learning algorithm for the modified network. Experimental results indicate that the radial basis function network and its extensions can be very useful in restoring images degraded by nonlinear distortion and noise.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/83.503912</identifier><identifier>PMID: 18285184</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Additive noise ; Degradation ; Gaussian processes ; Image processing ; Image restoration ; Nonlinear distortion ; Nonlinear filters ; Radial basis function networks ; Stochastic processes ; Wiener filter</subject><ispartof>IEEE transactions on image processing, 1996-06, Vol.5 (6), p.964-975</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-4b22d2f279321d9ba11aaafeeb3f70a003259d2d9a167bf25fdf22c85c41571f3</citedby><cites>FETCH-LOGICAL-c363t-4b22d2f279321d9ba11aaafeeb3f70a003259d2d9a167bf25fdf22c85c41571f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/503912$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/503912$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18285184$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Inhyok Cha</creatorcontrib><creatorcontrib>Kassam, S.A.</creatorcontrib><title>RBFN restoration of nonlinearly degraded images</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>We investigate a technique for image restoration using nonlinear networks based on radial basis functions. The technique is also based on the concept of training or learning by examples. When trained properly, these networks are used as spatially invariant feedforward nonlinear filters that can perform restoration of images degraded by nonlinear degradation mechanisms. We examine a number of network structures including the Gaussian radial basis function network (RBFN) and some extensions of it, as well as a number of training algorithms including the stochastic gradient (SG) algorithm that we have proposed earlier. We also propose a modified structure based on the Gaussian-mixture model and a learning algorithm for the modified network. Experimental results indicate that the radial basis function network and its extensions can be very useful in restoring images degraded by nonlinear distortion and noise.</description><subject>Additive noise</subject><subject>Degradation</subject><subject>Gaussian processes</subject><subject>Image processing</subject><subject>Image restoration</subject><subject>Nonlinear distortion</subject><subject>Nonlinear filters</subject><subject>Radial basis function networks</subject><subject>Stochastic processes</subject><subject>Wiener filter</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqF0M9LwzAUB_AgipvTg1cP0pPioVtefjTNUYdTYSiInkvavIxK185kO-y_N9KiNz0lkM_7kvcl5BzoFIDqWc6nknIN7ICMQQtIKRXsMN6pVKkCoUfkJIQPSkFIyI7JCHKWS8jFmMxe7xbPicew7bzZ1l2bdC5pu7apWzS-2ScWV95YtEm9NisMp-TImSbg2XBOyPvi_m3-mC5fHp7mt8u04hnfpqJkzDLHlOYMrC4NgDHGIZbcKWoo5Uxqy6w2kKnSMemsY6zKZSVAKnB8Qq773I3vPnfxe8W6DhU2jWmx24VCccEUKK6jvPpTxk0VVbn6H2Zc8BgZ4U0PK9-F4NEVGx-39_sCaPFdeJHzoi882sshdFeu0f7KoeEILnpQI-LP8zD9BYvrgPQ</recordid><startdate>19960601</startdate><enddate>19960601</enddate><creator>Inhyok Cha</creator><creator>Kassam, S.A.</creator><general>IEEE</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>19960601</creationdate><title>RBFN restoration of nonlinearly degraded images</title><author>Inhyok Cha ; Kassam, S.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-4b22d2f279321d9ba11aaafeeb3f70a003259d2d9a167bf25fdf22c85c41571f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Additive noise</topic><topic>Degradation</topic><topic>Gaussian processes</topic><topic>Image processing</topic><topic>Image restoration</topic><topic>Nonlinear distortion</topic><topic>Nonlinear filters</topic><topic>Radial basis function networks</topic><topic>Stochastic processes</topic><topic>Wiener filter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Inhyok Cha</creatorcontrib><creatorcontrib>Kassam, S.A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Inhyok Cha</au><au>Kassam, S.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RBFN restoration of nonlinearly degraded images</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>1996-06-01</date><risdate>1996</risdate><volume>5</volume><issue>6</issue><spage>964</spage><epage>975</epage><pages>964-975</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>We investigate a technique for image restoration using nonlinear networks based on radial basis functions. The technique is also based on the concept of training or learning by examples. When trained properly, these networks are used as spatially invariant feedforward nonlinear filters that can perform restoration of images degraded by nonlinear degradation mechanisms. We examine a number of network structures including the Gaussian radial basis function network (RBFN) and some extensions of it, as well as a number of training algorithms including the stochastic gradient (SG) algorithm that we have proposed earlier. We also propose a modified structure based on the Gaussian-mixture model and a learning algorithm for the modified network. Experimental results indicate that the radial basis function network and its extensions can be very useful in restoring images degraded by nonlinear distortion and noise.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18285184</pmid><doi>10.1109/83.503912</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 1996-06, Vol.5 (6), p.964-975 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_miscellaneous_26343173 |
source | IEEE Electronic Library (IEL) |
subjects | Additive noise Degradation Gaussian processes Image processing Image restoration Nonlinear distortion Nonlinear filters Radial basis function networks Stochastic processes Wiener filter |
title | RBFN restoration of nonlinearly degraded images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A29%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RBFN%20restoration%20of%20nonlinearly%20degraded%20images&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Inhyok%20Cha&rft.date=1996-06-01&rft.volume=5&rft.issue=6&rft.spage=964&rft.epage=975&rft.pages=964-975&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/83.503912&rft_dat=%3Cproquest_RIE%3E28570787%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26343173&rft_id=info:pmid/18285184&rft_ieee_id=503912&rfr_iscdi=true |