RBFN restoration of nonlinearly degraded images

We investigate a technique for image restoration using nonlinear networks based on radial basis functions. The technique is also based on the concept of training or learning by examples. When trained properly, these networks are used as spatially invariant feedforward nonlinear filters that can perf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 1996-06, Vol.5 (6), p.964-975
Hauptverfasser: Inhyok Cha, Kassam, S.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 975
container_issue 6
container_start_page 964
container_title IEEE transactions on image processing
container_volume 5
creator Inhyok Cha
Kassam, S.A.
description We investigate a technique for image restoration using nonlinear networks based on radial basis functions. The technique is also based on the concept of training or learning by examples. When trained properly, these networks are used as spatially invariant feedforward nonlinear filters that can perform restoration of images degraded by nonlinear degradation mechanisms. We examine a number of network structures including the Gaussian radial basis function network (RBFN) and some extensions of it, as well as a number of training algorithms including the stochastic gradient (SG) algorithm that we have proposed earlier. We also propose a modified structure based on the Gaussian-mixture model and a learning algorithm for the modified network. Experimental results indicate that the radial basis function network and its extensions can be very useful in restoring images degraded by nonlinear distortion and noise.
doi_str_mv 10.1109/83.503912
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_26343173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>503912</ieee_id><sourcerecordid>28570787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-4b22d2f279321d9ba11aaafeeb3f70a003259d2d9a167bf25fdf22c85c41571f3</originalsourceid><addsrcrecordid>eNqF0M9LwzAUB_AgipvTg1cP0pPioVtefjTNUYdTYSiInkvavIxK185kO-y_N9KiNz0lkM_7kvcl5BzoFIDqWc6nknIN7ICMQQtIKRXsMN6pVKkCoUfkJIQPSkFIyI7JCHKWS8jFmMxe7xbPicew7bzZ1l2bdC5pu7apWzS-2ScWV95YtEm9NisMp-TImSbg2XBOyPvi_m3-mC5fHp7mt8u04hnfpqJkzDLHlOYMrC4NgDHGIZbcKWoo5Uxqy6w2kKnSMemsY6zKZSVAKnB8Qq773I3vPnfxe8W6DhU2jWmx24VCccEUKK6jvPpTxk0VVbn6H2Zc8BgZ4U0PK9-F4NEVGx-39_sCaPFdeJHzoi882sshdFeu0f7KoeEILnpQI-LP8zD9BYvrgPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26343173</pqid></control><display><type>article</type><title>RBFN restoration of nonlinearly degraded images</title><source>IEEE Electronic Library (IEL)</source><creator>Inhyok Cha ; Kassam, S.A.</creator><creatorcontrib>Inhyok Cha ; Kassam, S.A.</creatorcontrib><description>We investigate a technique for image restoration using nonlinear networks based on radial basis functions. The technique is also based on the concept of training or learning by examples. When trained properly, these networks are used as spatially invariant feedforward nonlinear filters that can perform restoration of images degraded by nonlinear degradation mechanisms. We examine a number of network structures including the Gaussian radial basis function network (RBFN) and some extensions of it, as well as a number of training algorithms including the stochastic gradient (SG) algorithm that we have proposed earlier. We also propose a modified structure based on the Gaussian-mixture model and a learning algorithm for the modified network. Experimental results indicate that the radial basis function network and its extensions can be very useful in restoring images degraded by nonlinear distortion and noise.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/83.503912</identifier><identifier>PMID: 18285184</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Additive noise ; Degradation ; Gaussian processes ; Image processing ; Image restoration ; Nonlinear distortion ; Nonlinear filters ; Radial basis function networks ; Stochastic processes ; Wiener filter</subject><ispartof>IEEE transactions on image processing, 1996-06, Vol.5 (6), p.964-975</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-4b22d2f279321d9ba11aaafeeb3f70a003259d2d9a167bf25fdf22c85c41571f3</citedby><cites>FETCH-LOGICAL-c363t-4b22d2f279321d9ba11aaafeeb3f70a003259d2d9a167bf25fdf22c85c41571f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/503912$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/503912$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18285184$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Inhyok Cha</creatorcontrib><creatorcontrib>Kassam, S.A.</creatorcontrib><title>RBFN restoration of nonlinearly degraded images</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>We investigate a technique for image restoration using nonlinear networks based on radial basis functions. The technique is also based on the concept of training or learning by examples. When trained properly, these networks are used as spatially invariant feedforward nonlinear filters that can perform restoration of images degraded by nonlinear degradation mechanisms. We examine a number of network structures including the Gaussian radial basis function network (RBFN) and some extensions of it, as well as a number of training algorithms including the stochastic gradient (SG) algorithm that we have proposed earlier. We also propose a modified structure based on the Gaussian-mixture model and a learning algorithm for the modified network. Experimental results indicate that the radial basis function network and its extensions can be very useful in restoring images degraded by nonlinear distortion and noise.</description><subject>Additive noise</subject><subject>Degradation</subject><subject>Gaussian processes</subject><subject>Image processing</subject><subject>Image restoration</subject><subject>Nonlinear distortion</subject><subject>Nonlinear filters</subject><subject>Radial basis function networks</subject><subject>Stochastic processes</subject><subject>Wiener filter</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqF0M9LwzAUB_AgipvTg1cP0pPioVtefjTNUYdTYSiInkvavIxK185kO-y_N9KiNz0lkM_7kvcl5BzoFIDqWc6nknIN7ICMQQtIKRXsMN6pVKkCoUfkJIQPSkFIyI7JCHKWS8jFmMxe7xbPicew7bzZ1l2bdC5pu7apWzS-2ScWV95YtEm9NisMp-TImSbg2XBOyPvi_m3-mC5fHp7mt8u04hnfpqJkzDLHlOYMrC4NgDHGIZbcKWoo5Uxqy6w2kKnSMemsY6zKZSVAKnB8Qq773I3vPnfxe8W6DhU2jWmx24VCccEUKK6jvPpTxk0VVbn6H2Zc8BgZ4U0PK9-F4NEVGx-39_sCaPFdeJHzoi882sshdFeu0f7KoeEILnpQI-LP8zD9BYvrgPQ</recordid><startdate>19960601</startdate><enddate>19960601</enddate><creator>Inhyok Cha</creator><creator>Kassam, S.A.</creator><general>IEEE</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>19960601</creationdate><title>RBFN restoration of nonlinearly degraded images</title><author>Inhyok Cha ; Kassam, S.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-4b22d2f279321d9ba11aaafeeb3f70a003259d2d9a167bf25fdf22c85c41571f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Additive noise</topic><topic>Degradation</topic><topic>Gaussian processes</topic><topic>Image processing</topic><topic>Image restoration</topic><topic>Nonlinear distortion</topic><topic>Nonlinear filters</topic><topic>Radial basis function networks</topic><topic>Stochastic processes</topic><topic>Wiener filter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Inhyok Cha</creatorcontrib><creatorcontrib>Kassam, S.A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Inhyok Cha</au><au>Kassam, S.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RBFN restoration of nonlinearly degraded images</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>1996-06-01</date><risdate>1996</risdate><volume>5</volume><issue>6</issue><spage>964</spage><epage>975</epage><pages>964-975</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>We investigate a technique for image restoration using nonlinear networks based on radial basis functions. The technique is also based on the concept of training or learning by examples. When trained properly, these networks are used as spatially invariant feedforward nonlinear filters that can perform restoration of images degraded by nonlinear degradation mechanisms. We examine a number of network structures including the Gaussian radial basis function network (RBFN) and some extensions of it, as well as a number of training algorithms including the stochastic gradient (SG) algorithm that we have proposed earlier. We also propose a modified structure based on the Gaussian-mixture model and a learning algorithm for the modified network. Experimental results indicate that the radial basis function network and its extensions can be very useful in restoring images degraded by nonlinear distortion and noise.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18285184</pmid><doi>10.1109/83.503912</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 1996-06, Vol.5 (6), p.964-975
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_miscellaneous_26343173
source IEEE Electronic Library (IEL)
subjects Additive noise
Degradation
Gaussian processes
Image processing
Image restoration
Nonlinear distortion
Nonlinear filters
Radial basis function networks
Stochastic processes
Wiener filter
title RBFN restoration of nonlinearly degraded images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A29%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RBFN%20restoration%20of%20nonlinearly%20degraded%20images&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Inhyok%20Cha&rft.date=1996-06-01&rft.volume=5&rft.issue=6&rft.spage=964&rft.epage=975&rft.pages=964-975&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/83.503912&rft_dat=%3Cproquest_RIE%3E28570787%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26343173&rft_id=info:pmid/18285184&rft_ieee_id=503912&rfr_iscdi=true