Combining symbolic and neural learning
The last ten or so years have produced an explosion in the amount of research on machine learning. This rapid growth has occurred, largely independently, in both the symbolic and connectionist (neural network) machine learning communities. Fortunately, over the last few years these two communities h...
Gespeichert in:
Veröffentlicht in: | Machine learning 1994-03, Vol.14 (3), p.321-331 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 331 |
---|---|
container_issue | 3 |
container_start_page | 321 |
container_title | Machine learning |
container_volume | 14 |
creator | Shavlik, Jude W. |
description | The last ten or so years have produced an explosion in the amount of research on machine learning. This rapid growth has occurred, largely independently, in both the symbolic and connectionist (neural network) machine learning communities. Fortunately, over the last few years these two communities have become less separate, and there has been an increasing amount of research that can be considered a hybrid of the two approaches. This extended abstract reviews some of the research that combines the symbolic and neural network approaches to artificial intelligence. |
doi_str_mv | 10.1007/BF00993982 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26341420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26341420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-78f72c810b14befe14fba9901addd2a3d303729a0c3843b4ca2fde18fc3f5b93</originalsourceid><addsrcrecordid>eNpFkLtOwzAYRi0EEqGw8ASZOiCF_r7F9ggRBaRKXbpbvqIgJyl2M_TtoSpSp2_4js5wEHrE8IwBxOp1DaAUVZJcoQpzQRvgLb9GFUjJmxYTfovuSvkGANLKtkLLbhpsP_bjV12Og51S72oz-noMczapTsHk03mPbqJJJTz87wLt1m-77qPZbN8_u5dN4wgXh0bIKIiTGCxmNsSAWbRGKcDGe08M9RSoIMqAo5JRy5wh0Qcso6ORW0UXaHnW7vP0M4dy0ENfXEjJjGGaiyYtZZgR-AOfzqDLUyk5RL3P_WDyUWPQpxL6UoL-AvosT6c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26341420</pqid></control><display><type>article</type><title>Combining symbolic and neural learning</title><source>SpringerNature Journals</source><creator>Shavlik, Jude W.</creator><creatorcontrib>Shavlik, Jude W.</creatorcontrib><description>The last ten or so years have produced an explosion in the amount of research on machine learning. This rapid growth has occurred, largely independently, in both the symbolic and connectionist (neural network) machine learning communities. Fortunately, over the last few years these two communities have become less separate, and there has been an increasing amount of research that can be considered a hybrid of the two approaches. This extended abstract reviews some of the research that combines the symbolic and neural network approaches to artificial intelligence.</description><identifier>ISSN: 0885-6125</identifier><identifier>EISSN: 1573-0565</identifier><identifier>DOI: 10.1007/BF00993982</identifier><language>eng</language><ispartof>Machine learning, 1994-03, Vol.14 (3), p.321-331</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-78f72c810b14befe14fba9901addd2a3d303729a0c3843b4ca2fde18fc3f5b93</citedby><cites>FETCH-LOGICAL-c257t-78f72c810b14befe14fba9901addd2a3d303729a0c3843b4ca2fde18fc3f5b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shavlik, Jude W.</creatorcontrib><title>Combining symbolic and neural learning</title><title>Machine learning</title><description>The last ten or so years have produced an explosion in the amount of research on machine learning. This rapid growth has occurred, largely independently, in both the symbolic and connectionist (neural network) machine learning communities. Fortunately, over the last few years these two communities have become less separate, and there has been an increasing amount of research that can be considered a hybrid of the two approaches. This extended abstract reviews some of the research that combines the symbolic and neural network approaches to artificial intelligence.</description><issn>0885-6125</issn><issn>1573-0565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNpFkLtOwzAYRi0EEqGw8ASZOiCF_r7F9ggRBaRKXbpbvqIgJyl2M_TtoSpSp2_4js5wEHrE8IwBxOp1DaAUVZJcoQpzQRvgLb9GFUjJmxYTfovuSvkGANLKtkLLbhpsP_bjV12Og51S72oz-noMczapTsHk03mPbqJJJTz87wLt1m-77qPZbN8_u5dN4wgXh0bIKIiTGCxmNsSAWbRGKcDGe08M9RSoIMqAo5JRy5wh0Qcso6ORW0UXaHnW7vP0M4dy0ENfXEjJjGGaiyYtZZgR-AOfzqDLUyk5RL3P_WDyUWPQpxL6UoL-AvosT6c</recordid><startdate>19940301</startdate><enddate>19940301</enddate><creator>Shavlik, Jude W.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19940301</creationdate><title>Combining symbolic and neural learning</title><author>Shavlik, Jude W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-78f72c810b14befe14fba9901addd2a3d303729a0c3843b4ca2fde18fc3f5b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shavlik, Jude W.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Machine learning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shavlik, Jude W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining symbolic and neural learning</atitle><jtitle>Machine learning</jtitle><date>1994-03-01</date><risdate>1994</risdate><volume>14</volume><issue>3</issue><spage>321</spage><epage>331</epage><pages>321-331</pages><issn>0885-6125</issn><eissn>1573-0565</eissn><abstract>The last ten or so years have produced an explosion in the amount of research on machine learning. This rapid growth has occurred, largely independently, in both the symbolic and connectionist (neural network) machine learning communities. Fortunately, over the last few years these two communities have become less separate, and there has been an increasing amount of research that can be considered a hybrid of the two approaches. This extended abstract reviews some of the research that combines the symbolic and neural network approaches to artificial intelligence.</abstract><doi>10.1007/BF00993982</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-6125 |
ispartof | Machine learning, 1994-03, Vol.14 (3), p.321-331 |
issn | 0885-6125 1573-0565 |
language | eng |
recordid | cdi_proquest_miscellaneous_26341420 |
source | SpringerNature Journals |
title | Combining symbolic and neural learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A36%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20symbolic%20and%20neural%20learning&rft.jtitle=Machine%20learning&rft.au=Shavlik,%20Jude%20W.&rft.date=1994-03-01&rft.volume=14&rft.issue=3&rft.spage=321&rft.epage=331&rft.pages=321-331&rft.issn=0885-6125&rft.eissn=1573-0565&rft_id=info:doi/10.1007/BF00993982&rft_dat=%3Cproquest_cross%3E26341420%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26341420&rft_id=info:pmid/&rfr_iscdi=true |