Combining symbolic and neural learning

The last ten or so years have produced an explosion in the amount of research on machine learning. This rapid growth has occurred, largely independently, in both the symbolic and connectionist (neural network) machine learning communities. Fortunately, over the last few years these two communities h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning 1994-03, Vol.14 (3), p.321-331
1. Verfasser: Shavlik, Jude W.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 331
container_issue 3
container_start_page 321
container_title Machine learning
container_volume 14
creator Shavlik, Jude W.
description The last ten or so years have produced an explosion in the amount of research on machine learning. This rapid growth has occurred, largely independently, in both the symbolic and connectionist (neural network) machine learning communities. Fortunately, over the last few years these two communities have become less separate, and there has been an increasing amount of research that can be considered a hybrid of the two approaches. This extended abstract reviews some of the research that combines the symbolic and neural network approaches to artificial intelligence.
doi_str_mv 10.1007/BF00993982
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26341420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26341420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-78f72c810b14befe14fba9901addd2a3d303729a0c3843b4ca2fde18fc3f5b93</originalsourceid><addsrcrecordid>eNpFkLtOwzAYRi0EEqGw8ASZOiCF_r7F9ggRBaRKXbpbvqIgJyl2M_TtoSpSp2_4js5wEHrE8IwBxOp1DaAUVZJcoQpzQRvgLb9GFUjJmxYTfovuSvkGANLKtkLLbhpsP_bjV12Og51S72oz-noMczapTsHk03mPbqJJJTz87wLt1m-77qPZbN8_u5dN4wgXh0bIKIiTGCxmNsSAWbRGKcDGe08M9RSoIMqAo5JRy5wh0Qcso6ORW0UXaHnW7vP0M4dy0ENfXEjJjGGaiyYtZZgR-AOfzqDLUyk5RL3P_WDyUWPQpxL6UoL-AvosT6c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26341420</pqid></control><display><type>article</type><title>Combining symbolic and neural learning</title><source>SpringerNature Journals</source><creator>Shavlik, Jude W.</creator><creatorcontrib>Shavlik, Jude W.</creatorcontrib><description>The last ten or so years have produced an explosion in the amount of research on machine learning. This rapid growth has occurred, largely independently, in both the symbolic and connectionist (neural network) machine learning communities. Fortunately, over the last few years these two communities have become less separate, and there has been an increasing amount of research that can be considered a hybrid of the two approaches. This extended abstract reviews some of the research that combines the symbolic and neural network approaches to artificial intelligence.</description><identifier>ISSN: 0885-6125</identifier><identifier>EISSN: 1573-0565</identifier><identifier>DOI: 10.1007/BF00993982</identifier><language>eng</language><ispartof>Machine learning, 1994-03, Vol.14 (3), p.321-331</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-78f72c810b14befe14fba9901addd2a3d303729a0c3843b4ca2fde18fc3f5b93</citedby><cites>FETCH-LOGICAL-c257t-78f72c810b14befe14fba9901addd2a3d303729a0c3843b4ca2fde18fc3f5b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shavlik, Jude W.</creatorcontrib><title>Combining symbolic and neural learning</title><title>Machine learning</title><description>The last ten or so years have produced an explosion in the amount of research on machine learning. This rapid growth has occurred, largely independently, in both the symbolic and connectionist (neural network) machine learning communities. Fortunately, over the last few years these two communities have become less separate, and there has been an increasing amount of research that can be considered a hybrid of the two approaches. This extended abstract reviews some of the research that combines the symbolic and neural network approaches to artificial intelligence.</description><issn>0885-6125</issn><issn>1573-0565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNpFkLtOwzAYRi0EEqGw8ASZOiCF_r7F9ggRBaRKXbpbvqIgJyl2M_TtoSpSp2_4js5wEHrE8IwBxOp1DaAUVZJcoQpzQRvgLb9GFUjJmxYTfovuSvkGANLKtkLLbhpsP_bjV12Og51S72oz-noMczapTsHk03mPbqJJJTz87wLt1m-77qPZbN8_u5dN4wgXh0bIKIiTGCxmNsSAWbRGKcDGe08M9RSoIMqAo5JRy5wh0Qcso6ORW0UXaHnW7vP0M4dy0ENfXEjJjGGaiyYtZZgR-AOfzqDLUyk5RL3P_WDyUWPQpxL6UoL-AvosT6c</recordid><startdate>19940301</startdate><enddate>19940301</enddate><creator>Shavlik, Jude W.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19940301</creationdate><title>Combining symbolic and neural learning</title><author>Shavlik, Jude W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-78f72c810b14befe14fba9901addd2a3d303729a0c3843b4ca2fde18fc3f5b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shavlik, Jude W.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Machine learning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shavlik, Jude W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining symbolic and neural learning</atitle><jtitle>Machine learning</jtitle><date>1994-03-01</date><risdate>1994</risdate><volume>14</volume><issue>3</issue><spage>321</spage><epage>331</epage><pages>321-331</pages><issn>0885-6125</issn><eissn>1573-0565</eissn><abstract>The last ten or so years have produced an explosion in the amount of research on machine learning. This rapid growth has occurred, largely independently, in both the symbolic and connectionist (neural network) machine learning communities. Fortunately, over the last few years these two communities have become less separate, and there has been an increasing amount of research that can be considered a hybrid of the two approaches. This extended abstract reviews some of the research that combines the symbolic and neural network approaches to artificial intelligence.</abstract><doi>10.1007/BF00993982</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-6125
ispartof Machine learning, 1994-03, Vol.14 (3), p.321-331
issn 0885-6125
1573-0565
language eng
recordid cdi_proquest_miscellaneous_26341420
source SpringerNature Journals
title Combining symbolic and neural learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A36%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20symbolic%20and%20neural%20learning&rft.jtitle=Machine%20learning&rft.au=Shavlik,%20Jude%20W.&rft.date=1994-03-01&rft.volume=14&rft.issue=3&rft.spage=321&rft.epage=331&rft.pages=321-331&rft.issn=0885-6125&rft.eissn=1573-0565&rft_id=info:doi/10.1007/BF00993982&rft_dat=%3Cproquest_cross%3E26341420%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26341420&rft_id=info:pmid/&rfr_iscdi=true