Using computational methods to design patient-specific electrospun cardiac patches for pediatric heart failure
Autologous cardiac cell therapy is a promising treatment for combating the right ventricular heart failure (RVHF) that can occur in patients with congenital heart disease (CHD). However, autologous cell therapies suffer from low cell retention following injection and patient-to-patient variability i...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2022-04, Vol.283, p.121421-121421, Article 121421 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 121421 |
---|---|
container_issue | |
container_start_page | 121421 |
container_title | Biomaterials |
container_volume | 283 |
creator | Streeter, Benjamin W. Brown, Milton E. Shakya, Preety Park, Hyun-Ji Qiu, Jichuan Xia, Younan Davis, Michael E. |
description | Autologous cardiac cell therapy is a promising treatment for combating the right ventricular heart failure (RVHF) that can occur in patients with congenital heart disease (CHD). However, autologous cell therapies suffer from low cell retention following injection and patient-to-patient variability in cell quality. Here, we demonstrate how computational methods can be used to identify mechanisms of cardiac-derived c-Kit+ cell (CPC) reparative capacity and how biomaterials can be designed to improve cardiac patch performance by engaging these mechanisms. Computational modeling revealed the integrin subunit αV (ITGAV) as an important mediator of repair in CPCs with inherently low reparative capacity (CPCslow). We could engage ITGAV on the cell surface and improve reparative capacity by culturing CPCs on electrospun polycaprolactone (PCL) patches coated with fibronectin (PCL + FN). We tested CPCs from 4 different donors and found that only CPCslow with high ITGAV expression (patient 956) had improved anti-fibrotic and pro-angiogenic paracrine secretion on PCL + FN patches. Further, knockdown of ITGAV via siRNA led to loss of this improved paracrine secretion in patient 956 on PCL + FN patches. When implanted in rat model of RVHF, only PCL + FN + 956 patches were able to improve RV function, while PCL +956 patches did not. In total, we demonstrate how cardiac patches can be designed in a patient-specific manner to improve in vitro and in vivo outcomes.
[Display omitted]
•Statistical methods reveal ITGAV as a mediator of patient-derived CPC function.•CPCs with increased ITGAV have improved function on FN-coated cardiac patches.•Patient-specific cardiac patches improve RV function in rat models of RVHF. |
doi_str_mv | 10.1016/j.biomaterials.2022.121421 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2633915550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961222000606</els_id><sourcerecordid>2633915550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-e81b1cc932c28521e1e4340758d00a7e8a8ca7542d13a10370bc49c3bae822db3</originalsourceid><addsrcrecordid>eNqNkMFu2zAMQIVhxZq1-4VB6GkXZ6Jkx3JvQ7t1Awr00pwFmaYTBbblSvKA_n0VpC123Ekg-SiSj7ErEGsQsPl-WLfOjzZRcHaIaymkXIOEUsIHtgJd66JqRPWRrUTOFc0G5Dn7HONB5FiU8hM7V5WEBsp6xaZtdNOOox_nJdnk_GQHPlLa-y7y5HlH0e0mPucSTamIM6HrHXIaCFPwcV4mjjZ0zuIRwj1F3vvAZ8qpFDK5JxsS760blkCX7KzPO9OX1_eCbX_9fLz5Xdw_3P25-XFfoNIiFaShBcRGSZQ670pApSpFXelOCFuTthptXZWyA2VBqFq0WDaoWktayq5VF-zb6d85-KeFYjKji0jDYCfySzRyo1QDVVWJjF6fUMznxEC9mYMbbXg2IMzRtzmYf32bo29z8p2bv77OWdqRuvfWN8EZuD0BlK_96yiYiNkkZj0hGzSdd_8z5wWxtZo4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2633915550</pqid></control><display><type>article</type><title>Using computational methods to design patient-specific electrospun cardiac patches for pediatric heart failure</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Streeter, Benjamin W. ; Brown, Milton E. ; Shakya, Preety ; Park, Hyun-Ji ; Qiu, Jichuan ; Xia, Younan ; Davis, Michael E.</creator><creatorcontrib>Streeter, Benjamin W. ; Brown, Milton E. ; Shakya, Preety ; Park, Hyun-Ji ; Qiu, Jichuan ; Xia, Younan ; Davis, Michael E.</creatorcontrib><description>Autologous cardiac cell therapy is a promising treatment for combating the right ventricular heart failure (RVHF) that can occur in patients with congenital heart disease (CHD). However, autologous cell therapies suffer from low cell retention following injection and patient-to-patient variability in cell quality. Here, we demonstrate how computational methods can be used to identify mechanisms of cardiac-derived c-Kit+ cell (CPC) reparative capacity and how biomaterials can be designed to improve cardiac patch performance by engaging these mechanisms. Computational modeling revealed the integrin subunit αV (ITGAV) as an important mediator of repair in CPCs with inherently low reparative capacity (CPCslow). We could engage ITGAV on the cell surface and improve reparative capacity by culturing CPCs on electrospun polycaprolactone (PCL) patches coated with fibronectin (PCL + FN). We tested CPCs from 4 different donors and found that only CPCslow with high ITGAV expression (patient 956) had improved anti-fibrotic and pro-angiogenic paracrine secretion on PCL + FN patches. Further, knockdown of ITGAV via siRNA led to loss of this improved paracrine secretion in patient 956 on PCL + FN patches. When implanted in rat model of RVHF, only PCL + FN + 956 patches were able to improve RV function, while PCL +956 patches did not. In total, we demonstrate how cardiac patches can be designed in a patient-specific manner to improve in vitro and in vivo outcomes.
[Display omitted]
•Statistical methods reveal ITGAV as a mediator of patient-derived CPC function.•CPCs with increased ITGAV have improved function on FN-coated cardiac patches.•Patient-specific cardiac patches improve RV function in rat models of RVHF.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2022.121421</identifier><identifier>PMID: 35219147</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Animals ; Cardiac cell therapy ; Cardiac patch ; Cell- and Tissue-Based Therapy ; Child ; Computational modeling ; Congenital heart disease ; Fibronectin ; Heart Defects, Congenital - therapy ; Heart failure ; Heart Failure - therapy ; Heart Ventricles ; Humans ; Multipotent Stem Cells ; Rats</subject><ispartof>Biomaterials, 2022-04, Vol.283, p.121421-121421, Article 121421</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright © 2022 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-e81b1cc932c28521e1e4340758d00a7e8a8ca7542d13a10370bc49c3bae822db3</citedby><cites>FETCH-LOGICAL-c380t-e81b1cc932c28521e1e4340758d00a7e8a8ca7542d13a10370bc49c3bae822db3</cites><orcidid>0000-0002-0256-9036 ; 0000-0003-2431-7048 ; 0000-0002-6220-2201 ; 0000-0001-9688-4418 ; 0000-0002-9239-2886 ; 0000-0002-9993-8220</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2022.121421$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35219147$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Streeter, Benjamin W.</creatorcontrib><creatorcontrib>Brown, Milton E.</creatorcontrib><creatorcontrib>Shakya, Preety</creatorcontrib><creatorcontrib>Park, Hyun-Ji</creatorcontrib><creatorcontrib>Qiu, Jichuan</creatorcontrib><creatorcontrib>Xia, Younan</creatorcontrib><creatorcontrib>Davis, Michael E.</creatorcontrib><title>Using computational methods to design patient-specific electrospun cardiac patches for pediatric heart failure</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Autologous cardiac cell therapy is a promising treatment for combating the right ventricular heart failure (RVHF) that can occur in patients with congenital heart disease (CHD). However, autologous cell therapies suffer from low cell retention following injection and patient-to-patient variability in cell quality. Here, we demonstrate how computational methods can be used to identify mechanisms of cardiac-derived c-Kit+ cell (CPC) reparative capacity and how biomaterials can be designed to improve cardiac patch performance by engaging these mechanisms. Computational modeling revealed the integrin subunit αV (ITGAV) as an important mediator of repair in CPCs with inherently low reparative capacity (CPCslow). We could engage ITGAV on the cell surface and improve reparative capacity by culturing CPCs on electrospun polycaprolactone (PCL) patches coated with fibronectin (PCL + FN). We tested CPCs from 4 different donors and found that only CPCslow with high ITGAV expression (patient 956) had improved anti-fibrotic and pro-angiogenic paracrine secretion on PCL + FN patches. Further, knockdown of ITGAV via siRNA led to loss of this improved paracrine secretion in patient 956 on PCL + FN patches. When implanted in rat model of RVHF, only PCL + FN + 956 patches were able to improve RV function, while PCL +956 patches did not. In total, we demonstrate how cardiac patches can be designed in a patient-specific manner to improve in vitro and in vivo outcomes.
[Display omitted]
•Statistical methods reveal ITGAV as a mediator of patient-derived CPC function.•CPCs with increased ITGAV have improved function on FN-coated cardiac patches.•Patient-specific cardiac patches improve RV function in rat models of RVHF.</description><subject>Animals</subject><subject>Cardiac cell therapy</subject><subject>Cardiac patch</subject><subject>Cell- and Tissue-Based Therapy</subject><subject>Child</subject><subject>Computational modeling</subject><subject>Congenital heart disease</subject><subject>Fibronectin</subject><subject>Heart Defects, Congenital - therapy</subject><subject>Heart failure</subject><subject>Heart Failure - therapy</subject><subject>Heart Ventricles</subject><subject>Humans</subject><subject>Multipotent Stem Cells</subject><subject>Rats</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkMFu2zAMQIVhxZq1-4VB6GkXZ6Jkx3JvQ7t1Awr00pwFmaYTBbblSvKA_n0VpC123Ekg-SiSj7ErEGsQsPl-WLfOjzZRcHaIaymkXIOEUsIHtgJd66JqRPWRrUTOFc0G5Dn7HONB5FiU8hM7V5WEBsp6xaZtdNOOox_nJdnk_GQHPlLa-y7y5HlH0e0mPucSTamIM6HrHXIaCFPwcV4mjjZ0zuIRwj1F3vvAZ8qpFDK5JxsS760blkCX7KzPO9OX1_eCbX_9fLz5Xdw_3P25-XFfoNIiFaShBcRGSZQ670pApSpFXelOCFuTthptXZWyA2VBqFq0WDaoWktayq5VF-zb6d85-KeFYjKji0jDYCfySzRyo1QDVVWJjF6fUMznxEC9mYMbbXg2IMzRtzmYf32bo29z8p2bv77OWdqRuvfWN8EZuD0BlK_96yiYiNkkZj0hGzSdd_8z5wWxtZo4</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Streeter, Benjamin W.</creator><creator>Brown, Milton E.</creator><creator>Shakya, Preety</creator><creator>Park, Hyun-Ji</creator><creator>Qiu, Jichuan</creator><creator>Xia, Younan</creator><creator>Davis, Michael E.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0256-9036</orcidid><orcidid>https://orcid.org/0000-0003-2431-7048</orcidid><orcidid>https://orcid.org/0000-0002-6220-2201</orcidid><orcidid>https://orcid.org/0000-0001-9688-4418</orcidid><orcidid>https://orcid.org/0000-0002-9239-2886</orcidid><orcidid>https://orcid.org/0000-0002-9993-8220</orcidid></search><sort><creationdate>202204</creationdate><title>Using computational methods to design patient-specific electrospun cardiac patches for pediatric heart failure</title><author>Streeter, Benjamin W. ; Brown, Milton E. ; Shakya, Preety ; Park, Hyun-Ji ; Qiu, Jichuan ; Xia, Younan ; Davis, Michael E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-e81b1cc932c28521e1e4340758d00a7e8a8ca7542d13a10370bc49c3bae822db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Cardiac cell therapy</topic><topic>Cardiac patch</topic><topic>Cell- and Tissue-Based Therapy</topic><topic>Child</topic><topic>Computational modeling</topic><topic>Congenital heart disease</topic><topic>Fibronectin</topic><topic>Heart Defects, Congenital - therapy</topic><topic>Heart failure</topic><topic>Heart Failure - therapy</topic><topic>Heart Ventricles</topic><topic>Humans</topic><topic>Multipotent Stem Cells</topic><topic>Rats</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Streeter, Benjamin W.</creatorcontrib><creatorcontrib>Brown, Milton E.</creatorcontrib><creatorcontrib>Shakya, Preety</creatorcontrib><creatorcontrib>Park, Hyun-Ji</creatorcontrib><creatorcontrib>Qiu, Jichuan</creatorcontrib><creatorcontrib>Xia, Younan</creatorcontrib><creatorcontrib>Davis, Michael E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Streeter, Benjamin W.</au><au>Brown, Milton E.</au><au>Shakya, Preety</au><au>Park, Hyun-Ji</au><au>Qiu, Jichuan</au><au>Xia, Younan</au><au>Davis, Michael E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using computational methods to design patient-specific electrospun cardiac patches for pediatric heart failure</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2022-04</date><risdate>2022</risdate><volume>283</volume><spage>121421</spage><epage>121421</epage><pages>121421-121421</pages><artnum>121421</artnum><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Autologous cardiac cell therapy is a promising treatment for combating the right ventricular heart failure (RVHF) that can occur in patients with congenital heart disease (CHD). However, autologous cell therapies suffer from low cell retention following injection and patient-to-patient variability in cell quality. Here, we demonstrate how computational methods can be used to identify mechanisms of cardiac-derived c-Kit+ cell (CPC) reparative capacity and how biomaterials can be designed to improve cardiac patch performance by engaging these mechanisms. Computational modeling revealed the integrin subunit αV (ITGAV) as an important mediator of repair in CPCs with inherently low reparative capacity (CPCslow). We could engage ITGAV on the cell surface and improve reparative capacity by culturing CPCs on electrospun polycaprolactone (PCL) patches coated with fibronectin (PCL + FN). We tested CPCs from 4 different donors and found that only CPCslow with high ITGAV expression (patient 956) had improved anti-fibrotic and pro-angiogenic paracrine secretion on PCL + FN patches. Further, knockdown of ITGAV via siRNA led to loss of this improved paracrine secretion in patient 956 on PCL + FN patches. When implanted in rat model of RVHF, only PCL + FN + 956 patches were able to improve RV function, while PCL +956 patches did not. In total, we demonstrate how cardiac patches can be designed in a patient-specific manner to improve in vitro and in vivo outcomes.
[Display omitted]
•Statistical methods reveal ITGAV as a mediator of patient-derived CPC function.•CPCs with increased ITGAV have improved function on FN-coated cardiac patches.•Patient-specific cardiac patches improve RV function in rat models of RVHF.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>35219147</pmid><doi>10.1016/j.biomaterials.2022.121421</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0256-9036</orcidid><orcidid>https://orcid.org/0000-0003-2431-7048</orcidid><orcidid>https://orcid.org/0000-0002-6220-2201</orcidid><orcidid>https://orcid.org/0000-0001-9688-4418</orcidid><orcidid>https://orcid.org/0000-0002-9239-2886</orcidid><orcidid>https://orcid.org/0000-0002-9993-8220</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2022-04, Vol.283, p.121421-121421, Article 121421 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_2633915550 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Animals Cardiac cell therapy Cardiac patch Cell- and Tissue-Based Therapy Child Computational modeling Congenital heart disease Fibronectin Heart Defects, Congenital - therapy Heart failure Heart Failure - therapy Heart Ventricles Humans Multipotent Stem Cells Rats |
title | Using computational methods to design patient-specific electrospun cardiac patches for pediatric heart failure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A55%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20computational%20methods%20to%20design%20patient-specific%20electrospun%20cardiac%20patches%20for%20pediatric%20heart%20failure&rft.jtitle=Biomaterials&rft.au=Streeter,%20Benjamin%20W.&rft.date=2022-04&rft.volume=283&rft.spage=121421&rft.epage=121421&rft.pages=121421-121421&rft.artnum=121421&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2022.121421&rft_dat=%3Cproquest_cross%3E2633915550%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2633915550&rft_id=info:pmid/35219147&rft_els_id=S0142961222000606&rfr_iscdi=true |