Ryanodine receptor activity and store‐operated Ca2+ entry: Critical regulators of Ca2+ content and function in skeletal muscle

Store‐operated Ca2+ entry (SOCE) is critical to cell function. In skeletal muscle, SOCE has evolved alongside excitation–contraction coupling (EC coupling); as a result, it displays unique properties compared to SOCE in other cells. The plasma membrane of skeletal muscle is mostly internalized as th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of physiology 2023-10, Vol.601 (19), p.4183-4202
Hauptverfasser: Pearce, Luke, Aldo Meizoso‐Huesca, Seng, Crystal, Lamboley, Cedric R, Singh, Daniel P, Launikonis, Bradley S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4202
container_issue 19
container_start_page 4183
container_title The Journal of physiology
container_volume 601
creator Pearce, Luke
Aldo Meizoso‐Huesca
Seng, Crystal
Lamboley, Cedric R
Singh, Daniel P
Launikonis, Bradley S
description Store‐operated Ca2+ entry (SOCE) is critical to cell function. In skeletal muscle, SOCE has evolved alongside excitation–contraction coupling (EC coupling); as a result, it displays unique properties compared to SOCE in other cells. The plasma membrane of skeletal muscle is mostly internalized as the tubular system, with the tubules meeting the sarcoplasmic reticulum (SR) terminal cisternae, forming junctions where the proteins that regulate EC coupling and SOCE are positioned. In this review, we describe the properties and roles of SOCE based on direct measurements of Ca2+ influx during SR Ca2+ release and leak. SOCE is activated immediately and locally as the [Ca2+] of the junctional SR terminal cisternae ([Ca2+]jSR) depletes. [Ca2+]jSR changes rapidly and steeply with increasing activity of the SR ryanodine receptor isoform 1 (RyR1). The high fidelity of [Ca2+]jSR with RyR1 activity probably depends on the SR Ca2+‐buffer calsequestrin that is located immediately behind RyR1 inside the SR. This arrangement provides in‐phase activation and deactivation of SOCE with a large dynamic range, allowing precise grading of SOCE flux. The in‐phase activation of SOCE as the SR partially depletes traps Ca2+ in the cytoplasm, preventing net Ca2+ loss. Mild presentation of RyR1 leak can occur under physiological conditions, providing fibre Ca2+ redistribution without changing fibre Ca2+ content. This condition preserves normal contractile function at the same time as increasing basal metabolic rate. However, higher RyR1 leak drives excess cytoplasmic and mitochondrial Ca2+ load, setting a deleterious intracellular environment that compromises the function of the skeletal muscle.
doi_str_mv 10.1113/JP279512
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2633905575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2633905575</sourcerecordid><originalsourceid>FETCH-LOGICAL-p180t-1b3bb2c176b3b619b2536d9a37d0f17966ddd6e6317431c507ca17ea92308f0f3</originalsourceid><addsrcrecordid>eNpdjs1KAzEUhYMoWKvgIwTcCDKam3SSxp0UfykoouuSSe7I1GkyTjJCd30En9EnMVhXru7h8J2PS8gxsHMAEBcPT1zpEvgOGcFE6kIpLXbJiDHOC6FK2CcHMS4ZA8G0HpHN89r44BqPtEeLXQo9NTY1n01aU-MdjbnB781X6LA3CR2dGX5G0ad-fUlnfZMaa9q8fRtak9FIQ71FbPApY7-SevDZGTxtPI3v2GLKm9UQbYuHZK82bcSjvzsmrzfXL7O7Yv54ez-7mhcdTFkqoBJVxS0omYMEXfFSSKeNUI7VoLSUzjmJUoCaCLAlU9aAQqO5YNOa1WJMTrferg8fA8a0WDXRYtsaj2GICy6F0KwsVZnRk3_oMgy9z98t-FRqrSagmPgBTl5vVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869974170</pqid></control><display><type>article</type><title>Ryanodine receptor activity and store‐operated Ca2+ entry: Critical regulators of Ca2+ content and function in skeletal muscle</title><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><creator>Pearce, Luke ; Aldo Meizoso‐Huesca ; Seng, Crystal ; Lamboley, Cedric R ; Singh, Daniel P ; Launikonis, Bradley S</creator><creatorcontrib>Pearce, Luke ; Aldo Meizoso‐Huesca ; Seng, Crystal ; Lamboley, Cedric R ; Singh, Daniel P ; Launikonis, Bradley S</creatorcontrib><description>Store‐operated Ca2+ entry (SOCE) is critical to cell function. In skeletal muscle, SOCE has evolved alongside excitation–contraction coupling (EC coupling); as a result, it displays unique properties compared to SOCE in other cells. The plasma membrane of skeletal muscle is mostly internalized as the tubular system, with the tubules meeting the sarcoplasmic reticulum (SR) terminal cisternae, forming junctions where the proteins that regulate EC coupling and SOCE are positioned. In this review, we describe the properties and roles of SOCE based on direct measurements of Ca2+ influx during SR Ca2+ release and leak. SOCE is activated immediately and locally as the [Ca2+] of the junctional SR terminal cisternae ([Ca2+]jSR) depletes. [Ca2+]jSR changes rapidly and steeply with increasing activity of the SR ryanodine receptor isoform 1 (RyR1). The high fidelity of [Ca2+]jSR with RyR1 activity probably depends on the SR Ca2+‐buffer calsequestrin that is located immediately behind RyR1 inside the SR. This arrangement provides in‐phase activation and deactivation of SOCE with a large dynamic range, allowing precise grading of SOCE flux. The in‐phase activation of SOCE as the SR partially depletes traps Ca2+ in the cytoplasm, preventing net Ca2+ loss. Mild presentation of RyR1 leak can occur under physiological conditions, providing fibre Ca2+ redistribution without changing fibre Ca2+ content. This condition preserves normal contractile function at the same time as increasing basal metabolic rate. However, higher RyR1 leak drives excess cytoplasmic and mitochondrial Ca2+ load, setting a deleterious intracellular environment that compromises the function of the skeletal muscle.</description><identifier>ISSN: 0022-3751</identifier><identifier>EISSN: 1469-7793</identifier><identifier>DOI: 10.1113/JP279512</identifier><language>eng</language><publisher>London: Wiley Subscription Services, Inc</publisher><subject>Calcium (mitochondrial) ; Calcium buffering ; Calcium influx ; Calsequestrin ; Cytoplasm ; Leak channels ; Metabolic rate ; Muscle contraction ; Musculoskeletal system ; Ryanodine receptors ; Sarcoplasmic reticulum ; Skeletal muscle ; Tubules</subject><ispartof>The Journal of physiology, 2023-10, Vol.601 (19), p.4183-4202</ispartof><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pearce, Luke</creatorcontrib><creatorcontrib>Aldo Meizoso‐Huesca</creatorcontrib><creatorcontrib>Seng, Crystal</creatorcontrib><creatorcontrib>Lamboley, Cedric R</creatorcontrib><creatorcontrib>Singh, Daniel P</creatorcontrib><creatorcontrib>Launikonis, Bradley S</creatorcontrib><title>Ryanodine receptor activity and store‐operated Ca2+ entry: Critical regulators of Ca2+ content and function in skeletal muscle</title><title>The Journal of physiology</title><description>Store‐operated Ca2+ entry (SOCE) is critical to cell function. In skeletal muscle, SOCE has evolved alongside excitation–contraction coupling (EC coupling); as a result, it displays unique properties compared to SOCE in other cells. The plasma membrane of skeletal muscle is mostly internalized as the tubular system, with the tubules meeting the sarcoplasmic reticulum (SR) terminal cisternae, forming junctions where the proteins that regulate EC coupling and SOCE are positioned. In this review, we describe the properties and roles of SOCE based on direct measurements of Ca2+ influx during SR Ca2+ release and leak. SOCE is activated immediately and locally as the [Ca2+] of the junctional SR terminal cisternae ([Ca2+]jSR) depletes. [Ca2+]jSR changes rapidly and steeply with increasing activity of the SR ryanodine receptor isoform 1 (RyR1). The high fidelity of [Ca2+]jSR with RyR1 activity probably depends on the SR Ca2+‐buffer calsequestrin that is located immediately behind RyR1 inside the SR. This arrangement provides in‐phase activation and deactivation of SOCE with a large dynamic range, allowing precise grading of SOCE flux. The in‐phase activation of SOCE as the SR partially depletes traps Ca2+ in the cytoplasm, preventing net Ca2+ loss. Mild presentation of RyR1 leak can occur under physiological conditions, providing fibre Ca2+ redistribution without changing fibre Ca2+ content. This condition preserves normal contractile function at the same time as increasing basal metabolic rate. However, higher RyR1 leak drives excess cytoplasmic and mitochondrial Ca2+ load, setting a deleterious intracellular environment that compromises the function of the skeletal muscle.</description><subject>Calcium (mitochondrial)</subject><subject>Calcium buffering</subject><subject>Calcium influx</subject><subject>Calsequestrin</subject><subject>Cytoplasm</subject><subject>Leak channels</subject><subject>Metabolic rate</subject><subject>Muscle contraction</subject><subject>Musculoskeletal system</subject><subject>Ryanodine receptors</subject><subject>Sarcoplasmic reticulum</subject><subject>Skeletal muscle</subject><subject>Tubules</subject><issn>0022-3751</issn><issn>1469-7793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdjs1KAzEUhYMoWKvgIwTcCDKam3SSxp0UfykoouuSSe7I1GkyTjJCd30En9EnMVhXru7h8J2PS8gxsHMAEBcPT1zpEvgOGcFE6kIpLXbJiDHOC6FK2CcHMS4ZA8G0HpHN89r44BqPtEeLXQo9NTY1n01aU-MdjbnB781X6LA3CR2dGX5G0ad-fUlnfZMaa9q8fRtak9FIQ71FbPApY7-SevDZGTxtPI3v2GLKm9UQbYuHZK82bcSjvzsmrzfXL7O7Yv54ez-7mhcdTFkqoBJVxS0omYMEXfFSSKeNUI7VoLSUzjmJUoCaCLAlU9aAQqO5YNOa1WJMTrferg8fA8a0WDXRYtsaj2GICy6F0KwsVZnRk3_oMgy9z98t-FRqrSagmPgBTl5vVQ</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Pearce, Luke</creator><creator>Aldo Meizoso‐Huesca</creator><creator>Seng, Crystal</creator><creator>Lamboley, Cedric R</creator><creator>Singh, Daniel P</creator><creator>Launikonis, Bradley S</creator><general>Wiley Subscription Services, Inc</general><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20231001</creationdate><title>Ryanodine receptor activity and store‐operated Ca2+ entry: Critical regulators of Ca2+ content and function in skeletal muscle</title><author>Pearce, Luke ; Aldo Meizoso‐Huesca ; Seng, Crystal ; Lamboley, Cedric R ; Singh, Daniel P ; Launikonis, Bradley S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p180t-1b3bb2c176b3b619b2536d9a37d0f17966ddd6e6317431c507ca17ea92308f0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Calcium (mitochondrial)</topic><topic>Calcium buffering</topic><topic>Calcium influx</topic><topic>Calsequestrin</topic><topic>Cytoplasm</topic><topic>Leak channels</topic><topic>Metabolic rate</topic><topic>Muscle contraction</topic><topic>Musculoskeletal system</topic><topic>Ryanodine receptors</topic><topic>Sarcoplasmic reticulum</topic><topic>Skeletal muscle</topic><topic>Tubules</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pearce, Luke</creatorcontrib><creatorcontrib>Aldo Meizoso‐Huesca</creatorcontrib><creatorcontrib>Seng, Crystal</creatorcontrib><creatorcontrib>Lamboley, Cedric R</creatorcontrib><creatorcontrib>Singh, Daniel P</creatorcontrib><creatorcontrib>Launikonis, Bradley S</creatorcontrib><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pearce, Luke</au><au>Aldo Meizoso‐Huesca</au><au>Seng, Crystal</au><au>Lamboley, Cedric R</au><au>Singh, Daniel P</au><au>Launikonis, Bradley S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ryanodine receptor activity and store‐operated Ca2+ entry: Critical regulators of Ca2+ content and function in skeletal muscle</atitle><jtitle>The Journal of physiology</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>601</volume><issue>19</issue><spage>4183</spage><epage>4202</epage><pages>4183-4202</pages><issn>0022-3751</issn><eissn>1469-7793</eissn><abstract>Store‐operated Ca2+ entry (SOCE) is critical to cell function. In skeletal muscle, SOCE has evolved alongside excitation–contraction coupling (EC coupling); as a result, it displays unique properties compared to SOCE in other cells. The plasma membrane of skeletal muscle is mostly internalized as the tubular system, with the tubules meeting the sarcoplasmic reticulum (SR) terminal cisternae, forming junctions where the proteins that regulate EC coupling and SOCE are positioned. In this review, we describe the properties and roles of SOCE based on direct measurements of Ca2+ influx during SR Ca2+ release and leak. SOCE is activated immediately and locally as the [Ca2+] of the junctional SR terminal cisternae ([Ca2+]jSR) depletes. [Ca2+]jSR changes rapidly and steeply with increasing activity of the SR ryanodine receptor isoform 1 (RyR1). The high fidelity of [Ca2+]jSR with RyR1 activity probably depends on the SR Ca2+‐buffer calsequestrin that is located immediately behind RyR1 inside the SR. This arrangement provides in‐phase activation and deactivation of SOCE with a large dynamic range, allowing precise grading of SOCE flux. The in‐phase activation of SOCE as the SR partially depletes traps Ca2+ in the cytoplasm, preventing net Ca2+ loss. Mild presentation of RyR1 leak can occur under physiological conditions, providing fibre Ca2+ redistribution without changing fibre Ca2+ content. This condition preserves normal contractile function at the same time as increasing basal metabolic rate. However, higher RyR1 leak drives excess cytoplasmic and mitochondrial Ca2+ load, setting a deleterious intracellular environment that compromises the function of the skeletal muscle.</abstract><cop>London</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1113/JP279512</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3751
ispartof The Journal of physiology, 2023-10, Vol.601 (19), p.4183-4202
issn 0022-3751
1469-7793
language eng
recordid cdi_proquest_miscellaneous_2633905575
source Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central
subjects Calcium (mitochondrial)
Calcium buffering
Calcium influx
Calsequestrin
Cytoplasm
Leak channels
Metabolic rate
Muscle contraction
Musculoskeletal system
Ryanodine receptors
Sarcoplasmic reticulum
Skeletal muscle
Tubules
title Ryanodine receptor activity and store‐operated Ca2+ entry: Critical regulators of Ca2+ content and function in skeletal muscle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A24%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ryanodine%20receptor%20activity%20and%20store%E2%80%90operated%20Ca2+%20entry:%20Critical%20regulators%20of%20Ca2+%20content%20and%20function%20in%20skeletal%20muscle&rft.jtitle=The%20Journal%20of%20physiology&rft.au=Pearce,%20Luke&rft.date=2023-10-01&rft.volume=601&rft.issue=19&rft.spage=4183&rft.epage=4202&rft.pages=4183-4202&rft.issn=0022-3751&rft.eissn=1469-7793&rft_id=info:doi/10.1113/JP279512&rft_dat=%3Cproquest%3E2633905575%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2869974170&rft_id=info:pmid/&rfr_iscdi=true