Denoising in SVD-based ghost imaging

By the method of singular-valued decomposition (SVD), ghost imaging (GI) reconstructs the images with high efficiency. However, a small amount of noise can greatly degrade or even destroy the object information. In this paper, we experimentally investigate the method of truncated SVD (TSVD) by selec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2022-02, Vol.30 (4), p.6248-6257
Hauptverfasser: Chen, Liu-Ya, Wang, Chong, Xiao, Xu-Yi, Ren, Cheng, Zhang, De-Jian, Li, Zhuan, Cao, De-Zhong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6257
container_issue 4
container_start_page 6248
container_title Optics express
container_volume 30
creator Chen, Liu-Ya
Wang, Chong
Xiao, Xu-Yi
Ren, Cheng
Zhang, De-Jian
Li, Zhuan
Cao, De-Zhong
description By the method of singular-valued decomposition (SVD), ghost imaging (GI) reconstructs the images with high efficiency. However, a small amount of noise can greatly degrade or even destroy the object information. In this paper, we experimentally investigate the method of truncated SVD (TSVD) by selecting the first few largest singular values to enhance the image quality. The contrast-to-noise ratio and structural similarity of the images are improved with appropriate truncation ratios. To further improve the image quality, we analyze the noise effects on TSVD-based GI and introduce additional filters. TSVD-based GI may find its applications in rapid imaging under complicated environment conditions.
doi_str_mv 10.1364/OE.452991
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2633853017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2633853017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-63d4f6afec363c48a8f1bf7eb2d22e18e5171d4e2326b081ae1870477c02893b3</originalsourceid><addsrcrecordid>eNpNkLtOw0AQRVcIREKg4AeQCwooHHZ31vsoUWIeUiQXPNrV2h4bIz-C1y74-xglIKoZzT26Gh1CLhldMpDiLomXIuLGsCMyZ9SIUFCtjv_tM3Lm_SelTCijTskMIk5NJMWcXK-x7SpftWVQtcHL-zpMncc8KD86PwRV48opOicnhas9Xhzmgrw9xK-rp3CTPD6v7jdhBpwOoYRcFNIVmIGETGinC5YWClOec45MY8QUywVy4DKlmrnppqhQKqNcG0hhQW72vdu--xrRD7apfIZ17VrsRm-5BNARUKYm9HaPZn3nfY-F3fbTt_23ZdT-SLFJbPdSJvbqUDumDeZ_5K8F2AGa9FlU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2633853017</pqid></control><display><type>article</type><title>Denoising in SVD-based ghost imaging</title><source>EZB Free E-Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><creator>Chen, Liu-Ya ; Wang, Chong ; Xiao, Xu-Yi ; Ren, Cheng ; Zhang, De-Jian ; Li, Zhuan ; Cao, De-Zhong</creator><creatorcontrib>Chen, Liu-Ya ; Wang, Chong ; Xiao, Xu-Yi ; Ren, Cheng ; Zhang, De-Jian ; Li, Zhuan ; Cao, De-Zhong</creatorcontrib><description>By the method of singular-valued decomposition (SVD), ghost imaging (GI) reconstructs the images with high efficiency. However, a small amount of noise can greatly degrade or even destroy the object information. In this paper, we experimentally investigate the method of truncated SVD (TSVD) by selecting the first few largest singular values to enhance the image quality. The contrast-to-noise ratio and structural similarity of the images are improved with appropriate truncation ratios. To further improve the image quality, we analyze the noise effects on TSVD-based GI and introduce additional filters. TSVD-based GI may find its applications in rapid imaging under complicated environment conditions.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.452991</identifier><identifier>PMID: 35209564</identifier><language>eng</language><publisher>United States</publisher><ispartof>Optics express, 2022-02, Vol.30 (4), p.6248-6257</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-63d4f6afec363c48a8f1bf7eb2d22e18e5171d4e2326b081ae1870477c02893b3</citedby><cites>FETCH-LOGICAL-c320t-63d4f6afec363c48a8f1bf7eb2d22e18e5171d4e2326b081ae1870477c02893b3</cites><orcidid>0000-0002-7500-9419</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35209564$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Liu-Ya</creatorcontrib><creatorcontrib>Wang, Chong</creatorcontrib><creatorcontrib>Xiao, Xu-Yi</creatorcontrib><creatorcontrib>Ren, Cheng</creatorcontrib><creatorcontrib>Zhang, De-Jian</creatorcontrib><creatorcontrib>Li, Zhuan</creatorcontrib><creatorcontrib>Cao, De-Zhong</creatorcontrib><title>Denoising in SVD-based ghost imaging</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>By the method of singular-valued decomposition (SVD), ghost imaging (GI) reconstructs the images with high efficiency. However, a small amount of noise can greatly degrade or even destroy the object information. In this paper, we experimentally investigate the method of truncated SVD (TSVD) by selecting the first few largest singular values to enhance the image quality. The contrast-to-noise ratio and structural similarity of the images are improved with appropriate truncation ratios. To further improve the image quality, we analyze the noise effects on TSVD-based GI and introduce additional filters. TSVD-based GI may find its applications in rapid imaging under complicated environment conditions.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkLtOw0AQRVcIREKg4AeQCwooHHZ31vsoUWIeUiQXPNrV2h4bIz-C1y74-xglIKoZzT26Gh1CLhldMpDiLomXIuLGsCMyZ9SIUFCtjv_tM3Lm_SelTCijTskMIk5NJMWcXK-x7SpftWVQtcHL-zpMncc8KD86PwRV48opOicnhas9Xhzmgrw9xK-rp3CTPD6v7jdhBpwOoYRcFNIVmIGETGinC5YWClOec45MY8QUywVy4DKlmrnppqhQKqNcG0hhQW72vdu--xrRD7apfIZ17VrsRm-5BNARUKYm9HaPZn3nfY-F3fbTt_23ZdT-SLFJbPdSJvbqUDumDeZ_5K8F2AGa9FlU</recordid><startdate>20220214</startdate><enddate>20220214</enddate><creator>Chen, Liu-Ya</creator><creator>Wang, Chong</creator><creator>Xiao, Xu-Yi</creator><creator>Ren, Cheng</creator><creator>Zhang, De-Jian</creator><creator>Li, Zhuan</creator><creator>Cao, De-Zhong</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7500-9419</orcidid></search><sort><creationdate>20220214</creationdate><title>Denoising in SVD-based ghost imaging</title><author>Chen, Liu-Ya ; Wang, Chong ; Xiao, Xu-Yi ; Ren, Cheng ; Zhang, De-Jian ; Li, Zhuan ; Cao, De-Zhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-63d4f6afec363c48a8f1bf7eb2d22e18e5171d4e2326b081ae1870477c02893b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Liu-Ya</creatorcontrib><creatorcontrib>Wang, Chong</creatorcontrib><creatorcontrib>Xiao, Xu-Yi</creatorcontrib><creatorcontrib>Ren, Cheng</creatorcontrib><creatorcontrib>Zhang, De-Jian</creatorcontrib><creatorcontrib>Li, Zhuan</creatorcontrib><creatorcontrib>Cao, De-Zhong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Liu-Ya</au><au>Wang, Chong</au><au>Xiao, Xu-Yi</au><au>Ren, Cheng</au><au>Zhang, De-Jian</au><au>Li, Zhuan</au><au>Cao, De-Zhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Denoising in SVD-based ghost imaging</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2022-02-14</date><risdate>2022</risdate><volume>30</volume><issue>4</issue><spage>6248</spage><epage>6257</epage><pages>6248-6257</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>By the method of singular-valued decomposition (SVD), ghost imaging (GI) reconstructs the images with high efficiency. However, a small amount of noise can greatly degrade or even destroy the object information. In this paper, we experimentally investigate the method of truncated SVD (TSVD) by selecting the first few largest singular values to enhance the image quality. The contrast-to-noise ratio and structural similarity of the images are improved with appropriate truncation ratios. To further improve the image quality, we analyze the noise effects on TSVD-based GI and introduce additional filters. TSVD-based GI may find its applications in rapid imaging under complicated environment conditions.</abstract><cop>United States</cop><pmid>35209564</pmid><doi>10.1364/OE.452991</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7500-9419</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Optics express, 2022-02, Vol.30 (4), p.6248-6257
issn 1094-4087
1094-4087
language eng
recordid cdi_proquest_miscellaneous_2633853017
source EZB Free E-Journals; DOAJ Directory of Open Access Journals; Alma/SFX Local Collection
title Denoising in SVD-based ghost imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A40%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Denoising%20in%20SVD-based%20ghost%20imaging&rft.jtitle=Optics%20express&rft.au=Chen,%20Liu-Ya&rft.date=2022-02-14&rft.volume=30&rft.issue=4&rft.spage=6248&rft.epage=6257&rft.pages=6248-6257&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.452991&rft_dat=%3Cproquest_cross%3E2633853017%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2633853017&rft_id=info:pmid/35209564&rfr_iscdi=true