A framework for scintillation in nanophotonics

Bombardment of materials by high-energy particles often leads to light emission in a process known as scintillation. Scintillation has widespread applications in medical imaging, x-ray nondestructive inspection, electron microscopy, and high-energy particle detectors. Most research focuses on findin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2022-02, Vol.375 (6583), p.eabm9293-eabm9293
Hauptverfasser: Roques-Carmes, Charles, Rivera, Nicholas, Ghorashi, Ali, Kooi, Steven E, Yang, Yi, Lin, Zin, Beroz, Justin, Massuda, Aviram, Sloan, Jamison, Romeo, Nicolas, Yu, Yang, Joannopoulos, John D, Kaminer, Ido, Johnson, Steven G, Soljačić, Marin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bombardment of materials by high-energy particles often leads to light emission in a process known as scintillation. Scintillation has widespread applications in medical imaging, x-ray nondestructive inspection, electron microscopy, and high-energy particle detectors. Most research focuses on finding materials with brighter, faster, and more controlled scintillation. We developed a unified theory of nanophotonic scintillators that accounts for the key aspects of scintillation: energy loss by high-energy particles, and light emission by non-equilibrium electrons in nanostructured optical systems. We then devised an approach based on integrating nanophotonic structures into scintillators to enhance their emission, obtaining nearly an order-of-magnitude enhancement in both electron-induced and x-ray-induced scintillation. Our framework should enable the development of a new class of brighter, faster, and higher-resolution scintillators with tailored and optimized performance.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.abm9293