A recursive construction of particular solutions to a system of coupled linear partial differential equations with polynomial source term
If a system of coupled linear partial differential equations (PDEs) L·u = f in a compact simply connected region D of an n-dimensional space (e.g., n = 3) has a nonhomogeneous part f that is a vector of polynomials or can be approximated by a vector of polynomials, a particular solution can be writt...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 1996-05, Vol.69 (2), p.319-329 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 329 |
---|---|
container_issue | 2 |
container_start_page | 319 |
container_title | Journal of computational and applied mathematics |
container_volume | 69 |
creator | Matthys, Lieven Lambert, Hendrik De Mey, Gilbert |
description | If a system of coupled linear partial differential equations (PDEs)
L·u = f
in a compact simply connected region
D of an
n-dimensional space (e.g.,
n = 3) has a nonhomogeneous part
f that is a vector of polynomials or can be approximated by a vector of polynomials, a particular solution can be written as a linear combination of particular solutions
P
klm,v
of
L·u = x
1
kx
2
lx
3
m
e
v
, where
e
v
is the unit vector in the
v direction. The sequence of particular solutions
P
klm,v
can be determined recursively in a simple and efficient way.
This technique is an extension of an article of Janssen and Lambert (1992) who stated the theorem for a single PDE. Before extending it to systems of PDEs, their theorem is reviewed and slightly modified; an extra condition is added to ensure the explicit recursivity of the recursion formula. In the case of a system of coupled PDEs this condition can exclude the existence of a recursion formula.
The technique is generally applicable to reduce a nonhomogeneous problem to a homogeneous one, for which several solution techniques can be used. |
doi_str_mv | 10.1016/0377-0427(95)00038-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26333139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0377042795000380</els_id><sourcerecordid>26333139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-776b6ad57693165b67ef16a8abe892098a8bd28a377ea851551c8b935a3f53453</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVpodtN_0EPOpTSHtxIK-vrUgihXxDopTkLWR5TFdlyNHLK_oT869i7Iceehpl53hnmHULecfaZM64umdC6Ye1Bf7TyE2NMmIa9IDtutG241uYl2T0jr8kbxL8rpCxvd-ThihYIS8F4DzTkCWtZQo15onmgsy81hiX5QjGnZSsjrZl6ikesMG5MyMucoKcpTrByJ4lPtI_DAAWmUwJ3iz-L_8X6h845Hac8bh3MSwlAK5TxgrwafEJ4-xT35Pbb19_XP5qbX99_Xl_dNEGotjZaq075XmplBVeyUxoGrrzxHRh7YNZ40_UH49d7wRvJpeTBdFZILwYpWin25MN57lzy3QJY3RgxQEp-grygOyghBBd2BdszGEpGLDC4ucTRl6PjzG2-u81Ut5nqrHQn39fSnrx_mu8x-DQUP4WIz1rBuRK2XbEvZwzWW-8jFIchwhSgj-tDqutz_P-eRyTomaI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26333139</pqid></control><display><type>article</type><title>A recursive construction of particular solutions to a system of coupled linear partial differential equations with polynomial source term</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Matthys, Lieven ; Lambert, Hendrik ; De Mey, Gilbert</creator><creatorcontrib>Matthys, Lieven ; Lambert, Hendrik ; De Mey, Gilbert</creatorcontrib><description>If a system of coupled linear partial differential equations (PDEs)
L·u = f
in a compact simply connected region
D of an
n-dimensional space (e.g.,
n = 3) has a nonhomogeneous part
f that is a vector of polynomials or can be approximated by a vector of polynomials, a particular solution can be written as a linear combination of particular solutions
P
klm,v
of
L·u = x
1
kx
2
lx
3
m
e
v
, where
e
v
is the unit vector in the
v direction. The sequence of particular solutions
P
klm,v
can be determined recursively in a simple and efficient way.
This technique is an extension of an article of Janssen and Lambert (1992) who stated the theorem for a single PDE. Before extending it to systems of PDEs, their theorem is reviewed and slightly modified; an extra condition is added to ensure the explicit recursivity of the recursion formula. In the case of a system of coupled PDEs this condition can exclude the existence of a recursion formula.
The technique is generally applicable to reduce a nonhomogeneous problem to a homogeneous one, for which several solution techniques can be used.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/0377-0427(95)00038-0</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Exact sciences and technology ; Mathematical analysis ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Partial differential equation ; Partial differential equations ; Partial differential equations, boundary value problems ; Particular solution ; Polynomial approximation ; Recursion ; Sciences and techniques of general use</subject><ispartof>Journal of computational and applied mathematics, 1996-05, Vol.69 (2), p.319-329</ispartof><rights>1996</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-776b6ad57693165b67ef16a8abe892098a8bd28a377ea851551c8b935a3f53453</citedby><cites>FETCH-LOGICAL-c364t-776b6ad57693165b67ef16a8abe892098a8bd28a377ea851551c8b935a3f53453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0377-0427(95)00038-0$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3116394$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Matthys, Lieven</creatorcontrib><creatorcontrib>Lambert, Hendrik</creatorcontrib><creatorcontrib>De Mey, Gilbert</creatorcontrib><title>A recursive construction of particular solutions to a system of coupled linear partial differential equations with polynomial source term</title><title>Journal of computational and applied mathematics</title><description>If a system of coupled linear partial differential equations (PDEs)
L·u = f
in a compact simply connected region
D of an
n-dimensional space (e.g.,
n = 3) has a nonhomogeneous part
f that is a vector of polynomials or can be approximated by a vector of polynomials, a particular solution can be written as a linear combination of particular solutions
P
klm,v
of
L·u = x
1
kx
2
lx
3
m
e
v
, where
e
v
is the unit vector in the
v direction. The sequence of particular solutions
P
klm,v
can be determined recursively in a simple and efficient way.
This technique is an extension of an article of Janssen and Lambert (1992) who stated the theorem for a single PDE. Before extending it to systems of PDEs, their theorem is reviewed and slightly modified; an extra condition is added to ensure the explicit recursivity of the recursion formula. In the case of a system of coupled PDEs this condition can exclude the existence of a recursion formula.
The technique is generally applicable to reduce a nonhomogeneous problem to a homogeneous one, for which several solution techniques can be used.</description><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Partial differential equation</subject><subject>Partial differential equations</subject><subject>Partial differential equations, boundary value problems</subject><subject>Particular solution</subject><subject>Polynomial approximation</subject><subject>Recursion</subject><subject>Sciences and techniques of general use</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp9kU1r3DAQhkVpodtN_0EPOpTSHtxIK-vrUgihXxDopTkLWR5TFdlyNHLK_oT869i7Iceehpl53hnmHULecfaZM64umdC6Ye1Bf7TyE2NMmIa9IDtutG241uYl2T0jr8kbxL8rpCxvd-ThihYIS8F4DzTkCWtZQo15onmgsy81hiX5QjGnZSsjrZl6ikesMG5MyMucoKcpTrByJ4lPtI_DAAWmUwJ3iz-L_8X6h845Hac8bh3MSwlAK5TxgrwafEJ4-xT35Pbb19_XP5qbX99_Xl_dNEGotjZaq075XmplBVeyUxoGrrzxHRh7YNZ40_UH49d7wRvJpeTBdFZILwYpWin25MN57lzy3QJY3RgxQEp-grygOyghBBd2BdszGEpGLDC4ucTRl6PjzG2-u81Ut5nqrHQn39fSnrx_mu8x-DQUP4WIz1rBuRK2XbEvZwzWW-8jFIchwhSgj-tDqutz_P-eRyTomaI</recordid><startdate>19960523</startdate><enddate>19960523</enddate><creator>Matthys, Lieven</creator><creator>Lambert, Hendrik</creator><creator>De Mey, Gilbert</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19960523</creationdate><title>A recursive construction of particular solutions to a system of coupled linear partial differential equations with polynomial source term</title><author>Matthys, Lieven ; Lambert, Hendrik ; De Mey, Gilbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-776b6ad57693165b67ef16a8abe892098a8bd28a377ea851551c8b935a3f53453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Partial differential equation</topic><topic>Partial differential equations</topic><topic>Partial differential equations, boundary value problems</topic><topic>Particular solution</topic><topic>Polynomial approximation</topic><topic>Recursion</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matthys, Lieven</creatorcontrib><creatorcontrib>Lambert, Hendrik</creatorcontrib><creatorcontrib>De Mey, Gilbert</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matthys, Lieven</au><au>Lambert, Hendrik</au><au>De Mey, Gilbert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A recursive construction of particular solutions to a system of coupled linear partial differential equations with polynomial source term</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>1996-05-23</date><risdate>1996</risdate><volume>69</volume><issue>2</issue><spage>319</spage><epage>329</epage><pages>319-329</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>If a system of coupled linear partial differential equations (PDEs)
L·u = f
in a compact simply connected region
D of an
n-dimensional space (e.g.,
n = 3) has a nonhomogeneous part
f that is a vector of polynomials or can be approximated by a vector of polynomials, a particular solution can be written as a linear combination of particular solutions
P
klm,v
of
L·u = x
1
kx
2
lx
3
m
e
v
, where
e
v
is the unit vector in the
v direction. The sequence of particular solutions
P
klm,v
can be determined recursively in a simple and efficient way.
This technique is an extension of an article of Janssen and Lambert (1992) who stated the theorem for a single PDE. Before extending it to systems of PDEs, their theorem is reviewed and slightly modified; an extra condition is added to ensure the explicit recursivity of the recursion formula. In the case of a system of coupled PDEs this condition can exclude the existence of a recursion formula.
The technique is generally applicable to reduce a nonhomogeneous problem to a homogeneous one, for which several solution techniques can be used.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0377-0427(95)00038-0</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0427 |
ispartof | Journal of computational and applied mathematics, 1996-05, Vol.69 (2), p.319-329 |
issn | 0377-0427 1879-1778 |
language | eng |
recordid | cdi_proquest_miscellaneous_26333139 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present) |
subjects | Exact sciences and technology Mathematical analysis Mathematics Numerical analysis Numerical analysis. Scientific computation Partial differential equation Partial differential equations Partial differential equations, boundary value problems Particular solution Polynomial approximation Recursion Sciences and techniques of general use |
title | A recursive construction of particular solutions to a system of coupled linear partial differential equations with polynomial source term |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A52%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20recursive%20construction%20of%20particular%20solutions%20to%20a%20system%20of%20coupled%20linear%20partial%20differential%20equations%20with%20polynomial%20source%20term&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Matthys,%20Lieven&rft.date=1996-05-23&rft.volume=69&rft.issue=2&rft.spage=319&rft.epage=329&rft.pages=319-329&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/0377-0427(95)00038-0&rft_dat=%3Cproquest_cross%3E26333139%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26333139&rft_id=info:pmid/&rft_els_id=0377042795000380&rfr_iscdi=true |