Inertial Self-Assembly Dynamics of Interacting Droplet Ensembles in Microfluidic Flows

The multiphase flow of droplets is widespread and used for both biological and nonbiological applications alike. However, the ensemble interactions of such systems are inherently nonlinear and complex, compounded by interfacial effects, making it a difficult many-body problem. In comparison, the sel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2022-03, Vol.94 (9), p.3978-3986
Hauptverfasser: Jing, Wenyang, Han, Hee-Sun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3986
container_issue 9
container_start_page 3978
container_title Analytical chemistry (Washington)
container_volume 94
creator Jing, Wenyang
Han, Hee-Sun
description The multiphase flow of droplets is widespread and used for both biological and nonbiological applications alike. However, the ensemble interactions of such systems are inherently nonlinear and complex, compounded by interfacial effects, making it a difficult many-body problem. In comparison, the self-assembly dynamics of solid particles in flow have long been studied and exploited in the field of inertial microfluidics. Here, we report novel self-assembly dynamics of liquid drops in microfluidic channels that contrast starkly with the established paradigm of inertial microfluidics, which stipulates that higher inertia leads to better spatial ordering. Instead, we find that ordering can be negatively correlated with inertia, while Dean flow can achieve long-range spatial periodicity on length scales at least 3 orders of magnitude greater than the drop diameter. Experimentally, we decouple droplet generation from ordering, enabling independent and systematic variation of key parameters, especially in ranges practical to droplet microfluidics. We find the inertia-dependent emergence of preferred drop separations and show that surfactant effects can influence the longitudinal ordering of multidrop arrays. The dynamics we describe have immediate utility to droplet microfluidics, where the ability to order drops is key to the streamlined integration of on-chip incubation with deterministic drop manipulation downstreamtwo important functions for biological assays. To this end, we demonstrate the use of passive inertial drop self-assembly to combine a delay line with picoinjection. These results not only present a largely unexplored direction for inertial microfluidics but also show the practical benefit of its unification with the versatile field of droplet microfluidics.
doi_str_mv 10.1021/acs.analchem.1c05116
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2632810389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2632810389</sourcerecordid><originalsourceid>FETCH-LOGICAL-a325t-925f980b2fc30d9768c5d764b83f5e0ed4b9ca499319453ed740227c808071143</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EgvL4BwhZYmFJudeOE3tElEclEAOPNXIcB4ycpNiJUP89KS0MDEx3-c45uh8hxwhTBIbn2sSpbrU3b7aZogGBmG2RCQoGSSYl2yYTAOAJywH2yH6M7wCIgNku2eMClVCKTcjLvLWhd9rTR-vr5CJG25R-SWfLVjfORNrVdN72NmjTu_aVzkK38LanV-03aCN1Lb13JnS1H1zlDL323Wc8JDu19tEebe4Beb6-erq8Te4ebuaXF3eJ5kz0iWKiVhJKVhsOlcozaUSVZ2kpeS0s2CotldGpUhxVKrit8hQYy40ECTliyg_I2bp3EbqPwca-aFw01nvd2m6IBcs4kwhcqhE9_YO-d0MYBa6oVK5IhSOVrqnxoxiDrYtFcI0OywKhWHkvRu_Fj_di432MnWzKh7Kx1W_oR_QIwBpYxX-H_-38An-kkEM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648263291</pqid></control><display><type>article</type><title>Inertial Self-Assembly Dynamics of Interacting Droplet Ensembles in Microfluidic Flows</title><source>ACS Publications</source><source>MEDLINE</source><creator>Jing, Wenyang ; Han, Hee-Sun</creator><creatorcontrib>Jing, Wenyang ; Han, Hee-Sun</creatorcontrib><description>The multiphase flow of droplets is widespread and used for both biological and nonbiological applications alike. However, the ensemble interactions of such systems are inherently nonlinear and complex, compounded by interfacial effects, making it a difficult many-body problem. In comparison, the self-assembly dynamics of solid particles in flow have long been studied and exploited in the field of inertial microfluidics. Here, we report novel self-assembly dynamics of liquid drops in microfluidic channels that contrast starkly with the established paradigm of inertial microfluidics, which stipulates that higher inertia leads to better spatial ordering. Instead, we find that ordering can be negatively correlated with inertia, while Dean flow can achieve long-range spatial periodicity on length scales at least 3 orders of magnitude greater than the drop diameter. Experimentally, we decouple droplet generation from ordering, enabling independent and systematic variation of key parameters, especially in ranges practical to droplet microfluidics. We find the inertia-dependent emergence of preferred drop separations and show that surfactant effects can influence the longitudinal ordering of multidrop arrays. The dynamics we describe have immediate utility to droplet microfluidics, where the ability to order drops is key to the streamlined integration of on-chip incubation with deterministic drop manipulation downstreamtwo important functions for biological assays. To this end, we demonstrate the use of passive inertial drop self-assembly to combine a delay line with picoinjection. These results not only present a largely unexplored direction for inertial microfluidics but also show the practical benefit of its unification with the versatile field of droplet microfluidics.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.1c05116</identifier><identifier>PMID: 35195992</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Analytical chemistry ; Biological Assay ; Chemistry ; Delay lines ; Droplets ; Drops (liquids) ; Inertia ; Microfluidic Analytical Techniques - methods ; Microfluidics ; Multiphase flow ; Periodic variations ; Periodicity ; Self-assembly</subject><ispartof>Analytical chemistry (Washington), 2022-03, Vol.94 (9), p.3978-3986</ispartof><rights>2022 American Chemical Society</rights><rights>Copyright American Chemical Society Mar 8, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a325t-925f980b2fc30d9768c5d764b83f5e0ed4b9ca499319453ed740227c808071143</cites><orcidid>0000-0003-3616-291X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.1c05116$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.1c05116$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35195992$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jing, Wenyang</creatorcontrib><creatorcontrib>Han, Hee-Sun</creatorcontrib><title>Inertial Self-Assembly Dynamics of Interacting Droplet Ensembles in Microfluidic Flows</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>The multiphase flow of droplets is widespread and used for both biological and nonbiological applications alike. However, the ensemble interactions of such systems are inherently nonlinear and complex, compounded by interfacial effects, making it a difficult many-body problem. In comparison, the self-assembly dynamics of solid particles in flow have long been studied and exploited in the field of inertial microfluidics. Here, we report novel self-assembly dynamics of liquid drops in microfluidic channels that contrast starkly with the established paradigm of inertial microfluidics, which stipulates that higher inertia leads to better spatial ordering. Instead, we find that ordering can be negatively correlated with inertia, while Dean flow can achieve long-range spatial periodicity on length scales at least 3 orders of magnitude greater than the drop diameter. Experimentally, we decouple droplet generation from ordering, enabling independent and systematic variation of key parameters, especially in ranges practical to droplet microfluidics. We find the inertia-dependent emergence of preferred drop separations and show that surfactant effects can influence the longitudinal ordering of multidrop arrays. The dynamics we describe have immediate utility to droplet microfluidics, where the ability to order drops is key to the streamlined integration of on-chip incubation with deterministic drop manipulation downstreamtwo important functions for biological assays. To this end, we demonstrate the use of passive inertial drop self-assembly to combine a delay line with picoinjection. These results not only present a largely unexplored direction for inertial microfluidics but also show the practical benefit of its unification with the versatile field of droplet microfluidics.</description><subject>Analytical chemistry</subject><subject>Biological Assay</subject><subject>Chemistry</subject><subject>Delay lines</subject><subject>Droplets</subject><subject>Drops (liquids)</subject><subject>Inertia</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Microfluidics</subject><subject>Multiphase flow</subject><subject>Periodic variations</subject><subject>Periodicity</subject><subject>Self-assembly</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kDtPwzAUhS0EgvL4BwhZYmFJudeOE3tElEclEAOPNXIcB4ycpNiJUP89KS0MDEx3-c45uh8hxwhTBIbn2sSpbrU3b7aZogGBmG2RCQoGSSYl2yYTAOAJywH2yH6M7wCIgNku2eMClVCKTcjLvLWhd9rTR-vr5CJG25R-SWfLVjfORNrVdN72NmjTu_aVzkK38LanV-03aCN1Lb13JnS1H1zlDL323Wc8JDu19tEebe4Beb6-erq8Te4ebuaXF3eJ5kz0iWKiVhJKVhsOlcozaUSVZ2kpeS0s2CotldGpUhxVKrit8hQYy40ECTliyg_I2bp3EbqPwca-aFw01nvd2m6IBcs4kwhcqhE9_YO-d0MYBa6oVK5IhSOVrqnxoxiDrYtFcI0OywKhWHkvRu_Fj_di432MnWzKh7Kx1W_oR_QIwBpYxX-H_-38An-kkEM</recordid><startdate>20220308</startdate><enddate>20220308</enddate><creator>Jing, Wenyang</creator><creator>Han, Hee-Sun</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3616-291X</orcidid></search><sort><creationdate>20220308</creationdate><title>Inertial Self-Assembly Dynamics of Interacting Droplet Ensembles in Microfluidic Flows</title><author>Jing, Wenyang ; Han, Hee-Sun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a325t-925f980b2fc30d9768c5d764b83f5e0ed4b9ca499319453ed740227c808071143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytical chemistry</topic><topic>Biological Assay</topic><topic>Chemistry</topic><topic>Delay lines</topic><topic>Droplets</topic><topic>Drops (liquids)</topic><topic>Inertia</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Microfluidics</topic><topic>Multiphase flow</topic><topic>Periodic variations</topic><topic>Periodicity</topic><topic>Self-assembly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jing, Wenyang</creatorcontrib><creatorcontrib>Han, Hee-Sun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jing, Wenyang</au><au>Han, Hee-Sun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inertial Self-Assembly Dynamics of Interacting Droplet Ensembles in Microfluidic Flows</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2022-03-08</date><risdate>2022</risdate><volume>94</volume><issue>9</issue><spage>3978</spage><epage>3986</epage><pages>3978-3986</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>The multiphase flow of droplets is widespread and used for both biological and nonbiological applications alike. However, the ensemble interactions of such systems are inherently nonlinear and complex, compounded by interfacial effects, making it a difficult many-body problem. In comparison, the self-assembly dynamics of solid particles in flow have long been studied and exploited in the field of inertial microfluidics. Here, we report novel self-assembly dynamics of liquid drops in microfluidic channels that contrast starkly with the established paradigm of inertial microfluidics, which stipulates that higher inertia leads to better spatial ordering. Instead, we find that ordering can be negatively correlated with inertia, while Dean flow can achieve long-range spatial periodicity on length scales at least 3 orders of magnitude greater than the drop diameter. Experimentally, we decouple droplet generation from ordering, enabling independent and systematic variation of key parameters, especially in ranges practical to droplet microfluidics. We find the inertia-dependent emergence of preferred drop separations and show that surfactant effects can influence the longitudinal ordering of multidrop arrays. The dynamics we describe have immediate utility to droplet microfluidics, where the ability to order drops is key to the streamlined integration of on-chip incubation with deterministic drop manipulation downstreamtwo important functions for biological assays. To this end, we demonstrate the use of passive inertial drop self-assembly to combine a delay line with picoinjection. These results not only present a largely unexplored direction for inertial microfluidics but also show the practical benefit of its unification with the versatile field of droplet microfluidics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35195992</pmid><doi>10.1021/acs.analchem.1c05116</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3616-291X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2022-03, Vol.94 (9), p.3978-3986
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_2632810389
source ACS Publications; MEDLINE
subjects Analytical chemistry
Biological Assay
Chemistry
Delay lines
Droplets
Drops (liquids)
Inertia
Microfluidic Analytical Techniques - methods
Microfluidics
Multiphase flow
Periodic variations
Periodicity
Self-assembly
title Inertial Self-Assembly Dynamics of Interacting Droplet Ensembles in Microfluidic Flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T16%3A31%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inertial%20Self-Assembly%20Dynamics%20of%20Interacting%20Droplet%20Ensembles%20in%20Microfluidic%20Flows&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Jing,%20Wenyang&rft.date=2022-03-08&rft.volume=94&rft.issue=9&rft.spage=3978&rft.epage=3986&rft.pages=3978-3986&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.1c05116&rft_dat=%3Cproquest_cross%3E2632810389%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2648263291&rft_id=info:pmid/35195992&rfr_iscdi=true