SEPA: signaling entropy-based algorithm to evaluate personalized pathway activation for survival analysis on pan-cancer data
Abstract Motivation Biomarkers with prognostic ability and biological interpretability can be used to support decision-making in the survival analysis. Genes usually form functional modules to play synergistic roles, such as pathways. Predicting significant features from the functional level can eff...
Gespeichert in:
Veröffentlicht in: | Bioinformatics (Oxford, England) England), 2022-04, Vol.38 (9), p.2536-2543 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2543 |
---|---|
container_issue | 9 |
container_start_page | 2536 |
container_title | Bioinformatics (Oxford, England) |
container_volume | 38 |
creator | Li, Xingyi Li, Min Xiang, Ju Zhao, Zhelin Shang, Xuequn |
description | Abstract
Motivation
Biomarkers with prognostic ability and biological interpretability can be used to support decision-making in the survival analysis. Genes usually form functional modules to play synergistic roles, such as pathways. Predicting significant features from the functional level can effectively reduce the adverse effects of heterogeneity and obtain more reproducible and interpretable biomarkers. Personalized pathway activation inference can quantify the dysregulation of essential pathways involved in the initiation and progression of cancers, and can contribute to the development of personalized medical treatments.
Results
In this study, we propose a novel method to evaluate personalized pathway activation based on signaling entropy for survival analysis (SEPA), which is a new attempt to introduce the information-theoretic entropy in generating pathway representation for each patient. SEPA effectively integrates pathway-level information into gene expression data, converting the high-dimensional gene expression data into the low-dimensional biological pathway activation scores. SEPA shows its classification power on the prognostic pan-cancer genomic data, and the potential pathway markers identified based on SEPA have statistical significance in the discrimination of high- and low-risk cohorts and are likely to be associated with the initiation and progress of cancers. The results show that SEPA scores can be used as an indicator to precisely distinguish cancer patients with different clinical outcomes, and identify important pathway features with strong discriminative power and biological interpretability.
Availability and implementation
The MATLAB-package for SEPA is freely available from https://github.com/xingyili/SEPA.
Supplementary information
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btac122 |
format | Article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_2632804949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btac122</oup_id><sourcerecordid>2632804949</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-c9ce79df434cea1889975d0d6f6553b63bd7f58123096780915880fbf52c9cec3</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhoMofv8FydFL3aRp2sSbLOsHCArquUzTdI20TU3SlYo_3iy7Ct48zQzzvPPxInRGyQUlks0qY03fWNdBMMrPqgCKpukOOqQsL5JMULr7mxN2gI68fyOEcMLzfXTAOJWScnKIvp4Wj1eX2JtlD63pl1j3wdlhSirwusbQLq0z4bXDwWK9gnaEoPGgnbdr_jMiA4TXD5gwqGBW8Rrb43gX9qNbxbrFEMHJG49jY4A-UdAr7XANAU7QXgOt16fbeIxerhfP89vk_uHmbn51n6iM0JAoqXQh6yZjmdJAhZCy4DWp8ybnnFU5q-qi4YKmjMi8ECR-JgRpqoana6lix-h8M3dw9n3UPpSd8Uq3LfTajr5Mc5YKkslMRjTfoMpZ751uysGZDtxUUlKunS__Ol9unY_Cs-2Osep0_Sv7sToCdAPYcfjv0G-7RJlc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2632804949</pqid></control><display><type>article</type><title>SEPA: signaling entropy-based algorithm to evaluate personalized pathway activation for survival analysis on pan-cancer data</title><source>Oxford Journals Open Access Collection</source><creator>Li, Xingyi ; Li, Min ; Xiang, Ju ; Zhao, Zhelin ; Shang, Xuequn</creator><contributor>Przytycka, Teresa</contributor><creatorcontrib>Li, Xingyi ; Li, Min ; Xiang, Ju ; Zhao, Zhelin ; Shang, Xuequn ; Przytycka, Teresa</creatorcontrib><description>Abstract
Motivation
Biomarkers with prognostic ability and biological interpretability can be used to support decision-making in the survival analysis. Genes usually form functional modules to play synergistic roles, such as pathways. Predicting significant features from the functional level can effectively reduce the adverse effects of heterogeneity and obtain more reproducible and interpretable biomarkers. Personalized pathway activation inference can quantify the dysregulation of essential pathways involved in the initiation and progression of cancers, and can contribute to the development of personalized medical treatments.
Results
In this study, we propose a novel method to evaluate personalized pathway activation based on signaling entropy for survival analysis (SEPA), which is a new attempt to introduce the information-theoretic entropy in generating pathway representation for each patient. SEPA effectively integrates pathway-level information into gene expression data, converting the high-dimensional gene expression data into the low-dimensional biological pathway activation scores. SEPA shows its classification power on the prognostic pan-cancer genomic data, and the potential pathway markers identified based on SEPA have statistical significance in the discrimination of high- and low-risk cohorts and are likely to be associated with the initiation and progress of cancers. The results show that SEPA scores can be used as an indicator to precisely distinguish cancer patients with different clinical outcomes, and identify important pathway features with strong discriminative power and biological interpretability.
Availability and implementation
The MATLAB-package for SEPA is freely available from https://github.com/xingyili/SEPA.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btac122</identifier><identifier>PMID: 35199150</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><ispartof>Bioinformatics (Oxford, England), 2022-04, Vol.38 (9), p.2536-2543</ispartof><rights>The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2022</rights><rights>The Author(s) (2022). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-c9ce79df434cea1889975d0d6f6553b63bd7f58123096780915880fbf52c9cec3</citedby><cites>FETCH-LOGICAL-c401t-c9ce79df434cea1889975d0d6f6553b63bd7f58123096780915880fbf52c9cec3</cites><orcidid>0000-0002-0188-1394 ; 0000-0002-6004-4174 ; 0000-0002-3045-5706</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1603,27923,27924</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btac122$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35199150$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Przytycka, Teresa</contributor><creatorcontrib>Li, Xingyi</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><creatorcontrib>Xiang, Ju</creatorcontrib><creatorcontrib>Zhao, Zhelin</creatorcontrib><creatorcontrib>Shang, Xuequn</creatorcontrib><title>SEPA: signaling entropy-based algorithm to evaluate personalized pathway activation for survival analysis on pan-cancer data</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Abstract
Motivation
Biomarkers with prognostic ability and biological interpretability can be used to support decision-making in the survival analysis. Genes usually form functional modules to play synergistic roles, such as pathways. Predicting significant features from the functional level can effectively reduce the adverse effects of heterogeneity and obtain more reproducible and interpretable biomarkers. Personalized pathway activation inference can quantify the dysregulation of essential pathways involved in the initiation and progression of cancers, and can contribute to the development of personalized medical treatments.
Results
In this study, we propose a novel method to evaluate personalized pathway activation based on signaling entropy for survival analysis (SEPA), which is a new attempt to introduce the information-theoretic entropy in generating pathway representation for each patient. SEPA effectively integrates pathway-level information into gene expression data, converting the high-dimensional gene expression data into the low-dimensional biological pathway activation scores. SEPA shows its classification power on the prognostic pan-cancer genomic data, and the potential pathway markers identified based on SEPA have statistical significance in the discrimination of high- and low-risk cohorts and are likely to be associated with the initiation and progress of cancers. The results show that SEPA scores can be used as an indicator to precisely distinguish cancer patients with different clinical outcomes, and identify important pathway features with strong discriminative power and biological interpretability.
Availability and implementation
The MATLAB-package for SEPA is freely available from https://github.com/xingyili/SEPA.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LxDAQhoMofv8FydFL3aRp2sSbLOsHCArquUzTdI20TU3SlYo_3iy7Ct48zQzzvPPxInRGyQUlks0qY03fWNdBMMrPqgCKpukOOqQsL5JMULr7mxN2gI68fyOEcMLzfXTAOJWScnKIvp4Wj1eX2JtlD63pl1j3wdlhSirwusbQLq0z4bXDwWK9gnaEoPGgnbdr_jMiA4TXD5gwqGBW8Rrb43gX9qNbxbrFEMHJG49jY4A-UdAr7XANAU7QXgOt16fbeIxerhfP89vk_uHmbn51n6iM0JAoqXQh6yZjmdJAhZCy4DWp8ybnnFU5q-qi4YKmjMi8ECR-JgRpqoana6lix-h8M3dw9n3UPpSd8Uq3LfTajr5Mc5YKkslMRjTfoMpZ751uysGZDtxUUlKunS__Ol9unY_Cs-2Osep0_Sv7sToCdAPYcfjv0G-7RJlc</recordid><startdate>20220428</startdate><enddate>20220428</enddate><creator>Li, Xingyi</creator><creator>Li, Min</creator><creator>Xiang, Ju</creator><creator>Zhao, Zhelin</creator><creator>Shang, Xuequn</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0188-1394</orcidid><orcidid>https://orcid.org/0000-0002-6004-4174</orcidid><orcidid>https://orcid.org/0000-0002-3045-5706</orcidid></search><sort><creationdate>20220428</creationdate><title>SEPA: signaling entropy-based algorithm to evaluate personalized pathway activation for survival analysis on pan-cancer data</title><author>Li, Xingyi ; Li, Min ; Xiang, Ju ; Zhao, Zhelin ; Shang, Xuequn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-c9ce79df434cea1889975d0d6f6553b63bd7f58123096780915880fbf52c9cec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xingyi</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><creatorcontrib>Xiang, Ju</creatorcontrib><creatorcontrib>Zhao, Zhelin</creatorcontrib><creatorcontrib>Shang, Xuequn</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Xingyi</au><au>Li, Min</au><au>Xiang, Ju</au><au>Zhao, Zhelin</au><au>Shang, Xuequn</au><au>Przytycka, Teresa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SEPA: signaling entropy-based algorithm to evaluate personalized pathway activation for survival analysis on pan-cancer data</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2022-04-28</date><risdate>2022</risdate><volume>38</volume><issue>9</issue><spage>2536</spage><epage>2543</epage><pages>2536-2543</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>Abstract
Motivation
Biomarkers with prognostic ability and biological interpretability can be used to support decision-making in the survival analysis. Genes usually form functional modules to play synergistic roles, such as pathways. Predicting significant features from the functional level can effectively reduce the adverse effects of heterogeneity and obtain more reproducible and interpretable biomarkers. Personalized pathway activation inference can quantify the dysregulation of essential pathways involved in the initiation and progression of cancers, and can contribute to the development of personalized medical treatments.
Results
In this study, we propose a novel method to evaluate personalized pathway activation based on signaling entropy for survival analysis (SEPA), which is a new attempt to introduce the information-theoretic entropy in generating pathway representation for each patient. SEPA effectively integrates pathway-level information into gene expression data, converting the high-dimensional gene expression data into the low-dimensional biological pathway activation scores. SEPA shows its classification power on the prognostic pan-cancer genomic data, and the potential pathway markers identified based on SEPA have statistical significance in the discrimination of high- and low-risk cohorts and are likely to be associated with the initiation and progress of cancers. The results show that SEPA scores can be used as an indicator to precisely distinguish cancer patients with different clinical outcomes, and identify important pathway features with strong discriminative power and biological interpretability.
Availability and implementation
The MATLAB-package for SEPA is freely available from https://github.com/xingyili/SEPA.
Supplementary information
Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>35199150</pmid><doi>10.1093/bioinformatics/btac122</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0188-1394</orcidid><orcidid>https://orcid.org/0000-0002-6004-4174</orcidid><orcidid>https://orcid.org/0000-0002-3045-5706</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics (Oxford, England), 2022-04, Vol.38 (9), p.2536-2543 |
issn | 1367-4803 1367-4811 |
language | eng |
recordid | cdi_proquest_miscellaneous_2632804949 |
source | Oxford Journals Open Access Collection |
title | SEPA: signaling entropy-based algorithm to evaluate personalized pathway activation for survival analysis on pan-cancer data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T07%3A19%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SEPA:%20signaling%20entropy-based%20algorithm%20to%20evaluate%20personalized%20pathway%20activation%20for%20survival%20analysis%20on%20pan-cancer%20data&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Li,%20Xingyi&rft.date=2022-04-28&rft.volume=38&rft.issue=9&rft.spage=2536&rft.epage=2543&rft.pages=2536-2543&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btac122&rft_dat=%3Cproquest_TOX%3E2632804949%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2632804949&rft_id=info:pmid/35199150&rft_oup_id=10.1093/bioinformatics/btac122&rfr_iscdi=true |