SEPA: signaling entropy-based algorithm to evaluate personalized pathway activation for survival analysis on pan-cancer data

Abstract Motivation Biomarkers with prognostic ability and biological interpretability can be used to support decision-making in the survival analysis. Genes usually form functional modules to play synergistic roles, such as pathways. Predicting significant features from the functional level can eff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics (Oxford, England) England), 2022-04, Vol.38 (9), p.2536-2543
Hauptverfasser: Li, Xingyi, Li, Min, Xiang, Ju, Zhao, Zhelin, Shang, Xuequn
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2543
container_issue 9
container_start_page 2536
container_title Bioinformatics (Oxford, England)
container_volume 38
creator Li, Xingyi
Li, Min
Xiang, Ju
Zhao, Zhelin
Shang, Xuequn
description Abstract Motivation Biomarkers with prognostic ability and biological interpretability can be used to support decision-making in the survival analysis. Genes usually form functional modules to play synergistic roles, such as pathways. Predicting significant features from the functional level can effectively reduce the adverse effects of heterogeneity and obtain more reproducible and interpretable biomarkers. Personalized pathway activation inference can quantify the dysregulation of essential pathways involved in the initiation and progression of cancers, and can contribute to the development of personalized medical treatments. Results In this study, we propose a novel method to evaluate personalized pathway activation based on signaling entropy for survival analysis (SEPA), which is a new attempt to introduce the information-theoretic entropy in generating pathway representation for each patient. SEPA effectively integrates pathway-level information into gene expression data, converting the high-dimensional gene expression data into the low-dimensional biological pathway activation scores. SEPA shows its classification power on the prognostic pan-cancer genomic data, and the potential pathway markers identified based on SEPA have statistical significance in the discrimination of high- and low-risk cohorts and are likely to be associated with the initiation and progress of cancers. The results show that SEPA scores can be used as an indicator to precisely distinguish cancer patients with different clinical outcomes, and identify important pathway features with strong discriminative power and biological interpretability. Availability and implementation The MATLAB-package for SEPA is freely available from https://github.com/xingyili/SEPA. Supplementary information Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/btac122
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_2632804949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btac122</oup_id><sourcerecordid>2632804949</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-c9ce79df434cea1889975d0d6f6553b63bd7f58123096780915880fbf52c9cec3</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhoMofv8FydFL3aRp2sSbLOsHCArquUzTdI20TU3SlYo_3iy7Ct48zQzzvPPxInRGyQUlks0qY03fWNdBMMrPqgCKpukOOqQsL5JMULr7mxN2gI68fyOEcMLzfXTAOJWScnKIvp4Wj1eX2JtlD63pl1j3wdlhSirwusbQLq0z4bXDwWK9gnaEoPGgnbdr_jMiA4TXD5gwqGBW8Rrb43gX9qNbxbrFEMHJG49jY4A-UdAr7XANAU7QXgOt16fbeIxerhfP89vk_uHmbn51n6iM0JAoqXQh6yZjmdJAhZCy4DWp8ybnnFU5q-qi4YKmjMi8ECR-JgRpqoana6lix-h8M3dw9n3UPpSd8Uq3LfTajr5Mc5YKkslMRjTfoMpZ751uysGZDtxUUlKunS__Ol9unY_Cs-2Osep0_Sv7sToCdAPYcfjv0G-7RJlc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2632804949</pqid></control><display><type>article</type><title>SEPA: signaling entropy-based algorithm to evaluate personalized pathway activation for survival analysis on pan-cancer data</title><source>Oxford Journals Open Access Collection</source><creator>Li, Xingyi ; Li, Min ; Xiang, Ju ; Zhao, Zhelin ; Shang, Xuequn</creator><contributor>Przytycka, Teresa</contributor><creatorcontrib>Li, Xingyi ; Li, Min ; Xiang, Ju ; Zhao, Zhelin ; Shang, Xuequn ; Przytycka, Teresa</creatorcontrib><description>Abstract Motivation Biomarkers with prognostic ability and biological interpretability can be used to support decision-making in the survival analysis. Genes usually form functional modules to play synergistic roles, such as pathways. Predicting significant features from the functional level can effectively reduce the adverse effects of heterogeneity and obtain more reproducible and interpretable biomarkers. Personalized pathway activation inference can quantify the dysregulation of essential pathways involved in the initiation and progression of cancers, and can contribute to the development of personalized medical treatments. Results In this study, we propose a novel method to evaluate personalized pathway activation based on signaling entropy for survival analysis (SEPA), which is a new attempt to introduce the information-theoretic entropy in generating pathway representation for each patient. SEPA effectively integrates pathway-level information into gene expression data, converting the high-dimensional gene expression data into the low-dimensional biological pathway activation scores. SEPA shows its classification power on the prognostic pan-cancer genomic data, and the potential pathway markers identified based on SEPA have statistical significance in the discrimination of high- and low-risk cohorts and are likely to be associated with the initiation and progress of cancers. The results show that SEPA scores can be used as an indicator to precisely distinguish cancer patients with different clinical outcomes, and identify important pathway features with strong discriminative power and biological interpretability. Availability and implementation The MATLAB-package for SEPA is freely available from https://github.com/xingyili/SEPA. Supplementary information Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btac122</identifier><identifier>PMID: 35199150</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><ispartof>Bioinformatics (Oxford, England), 2022-04, Vol.38 (9), p.2536-2543</ispartof><rights>The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2022</rights><rights>The Author(s) (2022). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-c9ce79df434cea1889975d0d6f6553b63bd7f58123096780915880fbf52c9cec3</citedby><cites>FETCH-LOGICAL-c401t-c9ce79df434cea1889975d0d6f6553b63bd7f58123096780915880fbf52c9cec3</cites><orcidid>0000-0002-0188-1394 ; 0000-0002-6004-4174 ; 0000-0002-3045-5706</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1603,27923,27924</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btac122$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35199150$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Przytycka, Teresa</contributor><creatorcontrib>Li, Xingyi</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><creatorcontrib>Xiang, Ju</creatorcontrib><creatorcontrib>Zhao, Zhelin</creatorcontrib><creatorcontrib>Shang, Xuequn</creatorcontrib><title>SEPA: signaling entropy-based algorithm to evaluate personalized pathway activation for survival analysis on pan-cancer data</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Abstract Motivation Biomarkers with prognostic ability and biological interpretability can be used to support decision-making in the survival analysis. Genes usually form functional modules to play synergistic roles, such as pathways. Predicting significant features from the functional level can effectively reduce the adverse effects of heterogeneity and obtain more reproducible and interpretable biomarkers. Personalized pathway activation inference can quantify the dysregulation of essential pathways involved in the initiation and progression of cancers, and can contribute to the development of personalized medical treatments. Results In this study, we propose a novel method to evaluate personalized pathway activation based on signaling entropy for survival analysis (SEPA), which is a new attempt to introduce the information-theoretic entropy in generating pathway representation for each patient. SEPA effectively integrates pathway-level information into gene expression data, converting the high-dimensional gene expression data into the low-dimensional biological pathway activation scores. SEPA shows its classification power on the prognostic pan-cancer genomic data, and the potential pathway markers identified based on SEPA have statistical significance in the discrimination of high- and low-risk cohorts and are likely to be associated with the initiation and progress of cancers. The results show that SEPA scores can be used as an indicator to precisely distinguish cancer patients with different clinical outcomes, and identify important pathway features with strong discriminative power and biological interpretability. Availability and implementation The MATLAB-package for SEPA is freely available from https://github.com/xingyili/SEPA. Supplementary information Supplementary data are available at Bioinformatics online.</description><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LxDAQhoMofv8FydFL3aRp2sSbLOsHCArquUzTdI20TU3SlYo_3iy7Ct48zQzzvPPxInRGyQUlks0qY03fWNdBMMrPqgCKpukOOqQsL5JMULr7mxN2gI68fyOEcMLzfXTAOJWScnKIvp4Wj1eX2JtlD63pl1j3wdlhSirwusbQLq0z4bXDwWK9gnaEoPGgnbdr_jMiA4TXD5gwqGBW8Rrb43gX9qNbxbrFEMHJG49jY4A-UdAr7XANAU7QXgOt16fbeIxerhfP89vk_uHmbn51n6iM0JAoqXQh6yZjmdJAhZCy4DWp8ybnnFU5q-qi4YKmjMi8ECR-JgRpqoana6lix-h8M3dw9n3UPpSd8Uq3LfTajr5Mc5YKkslMRjTfoMpZ751uysGZDtxUUlKunS__Ol9unY_Cs-2Osep0_Sv7sToCdAPYcfjv0G-7RJlc</recordid><startdate>20220428</startdate><enddate>20220428</enddate><creator>Li, Xingyi</creator><creator>Li, Min</creator><creator>Xiang, Ju</creator><creator>Zhao, Zhelin</creator><creator>Shang, Xuequn</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0188-1394</orcidid><orcidid>https://orcid.org/0000-0002-6004-4174</orcidid><orcidid>https://orcid.org/0000-0002-3045-5706</orcidid></search><sort><creationdate>20220428</creationdate><title>SEPA: signaling entropy-based algorithm to evaluate personalized pathway activation for survival analysis on pan-cancer data</title><author>Li, Xingyi ; Li, Min ; Xiang, Ju ; Zhao, Zhelin ; Shang, Xuequn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-c9ce79df434cea1889975d0d6f6553b63bd7f58123096780915880fbf52c9cec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xingyi</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><creatorcontrib>Xiang, Ju</creatorcontrib><creatorcontrib>Zhao, Zhelin</creatorcontrib><creatorcontrib>Shang, Xuequn</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Xingyi</au><au>Li, Min</au><au>Xiang, Ju</au><au>Zhao, Zhelin</au><au>Shang, Xuequn</au><au>Przytycka, Teresa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SEPA: signaling entropy-based algorithm to evaluate personalized pathway activation for survival analysis on pan-cancer data</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2022-04-28</date><risdate>2022</risdate><volume>38</volume><issue>9</issue><spage>2536</spage><epage>2543</epage><pages>2536-2543</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>Abstract Motivation Biomarkers with prognostic ability and biological interpretability can be used to support decision-making in the survival analysis. Genes usually form functional modules to play synergistic roles, such as pathways. Predicting significant features from the functional level can effectively reduce the adverse effects of heterogeneity and obtain more reproducible and interpretable biomarkers. Personalized pathway activation inference can quantify the dysregulation of essential pathways involved in the initiation and progression of cancers, and can contribute to the development of personalized medical treatments. Results In this study, we propose a novel method to evaluate personalized pathway activation based on signaling entropy for survival analysis (SEPA), which is a new attempt to introduce the information-theoretic entropy in generating pathway representation for each patient. SEPA effectively integrates pathway-level information into gene expression data, converting the high-dimensional gene expression data into the low-dimensional biological pathway activation scores. SEPA shows its classification power on the prognostic pan-cancer genomic data, and the potential pathway markers identified based on SEPA have statistical significance in the discrimination of high- and low-risk cohorts and are likely to be associated with the initiation and progress of cancers. The results show that SEPA scores can be used as an indicator to precisely distinguish cancer patients with different clinical outcomes, and identify important pathway features with strong discriminative power and biological interpretability. Availability and implementation The MATLAB-package for SEPA is freely available from https://github.com/xingyili/SEPA. Supplementary information Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>35199150</pmid><doi>10.1093/bioinformatics/btac122</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0188-1394</orcidid><orcidid>https://orcid.org/0000-0002-6004-4174</orcidid><orcidid>https://orcid.org/0000-0002-3045-5706</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1367-4803
ispartof Bioinformatics (Oxford, England), 2022-04, Vol.38 (9), p.2536-2543
issn 1367-4803
1367-4811
language eng
recordid cdi_proquest_miscellaneous_2632804949
source Oxford Journals Open Access Collection
title SEPA: signaling entropy-based algorithm to evaluate personalized pathway activation for survival analysis on pan-cancer data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T07%3A19%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SEPA:%20signaling%20entropy-based%20algorithm%20to%20evaluate%20personalized%20pathway%20activation%20for%20survival%20analysis%20on%20pan-cancer%20data&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Li,%20Xingyi&rft.date=2022-04-28&rft.volume=38&rft.issue=9&rft.spage=2536&rft.epage=2543&rft.pages=2536-2543&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btac122&rft_dat=%3Cproquest_TOX%3E2632804949%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2632804949&rft_id=info:pmid/35199150&rft_oup_id=10.1093/bioinformatics/btac122&rfr_iscdi=true