Three-dimensional diffusion coefficient measurement by a large depth-of-field rotating point spread function

A prominent challenge in single-molecule localization microscopy is the real-time, fast, and accurate localization of nano-objects moving in three-dimensional (3D) samples. A well-established method for 3D single-molecule localization is the double-helix pointspread-function (DH-PSF) engineering, wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied optics (2004) 2021-12, Vol.60 (35), p.10766-10771
Hauptverfasser: Wang, Famin, Li, Hangfeng, Ji, Lin, Zhao, Mengyuan, Miu, Xin, Zhang, Yunhai, Huang, Wei, Wei, Tongda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10771
container_issue 35
container_start_page 10766
container_title Applied optics (2004)
container_volume 60
creator Wang, Famin
Li, Hangfeng
Ji, Lin
Zhao, Mengyuan
Miu, Xin
Zhang, Yunhai
Huang, Wei
Wei, Tongda
description A prominent challenge in single-molecule localization microscopy is the real-time, fast, and accurate localization of nano-objects moving in three-dimensional (3D) samples. A well-established method for 3D single-molecule localization is the double-helix pointspread-function (DH-PSF) engineering, which uses additional optical elements to make the PSF exhibit different rotation angles with different nanoparticle depths. However, the compact main lobe size, effective detection depth, and precise conversion between rotation angle and depth are necessary, posing challenges to the DH-PSF generation method. Here we generate a more compact DH-PSF using Fresnel-zone-based spiral phases, and the pure phase mask achieves high transmission efficiency. The final generated DH-PSFs have a linear rotation rate at each axial position, showing a more accurate rotation angle and depth conversion. The Cramer-Rao lower limit calculation results show that the axial depth of DH-PSF extends to ∼11µ with an axial localization precision of ∼45 at 3000 photons and average background noise of 15. We measured the diffusion coefficient of nanospheres in different concentrations of glycerol using the generated DH-PSF. The measured results are within 6% error from the theoretical values, indicating the superior performance of the DH-PSF for nanoparticle diffusion coefficient measurements.
doi_str_mv 10.1364/AO.433893
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2632803546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2609117138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-fbfbf3e515349fda6a1f0cd3e153f8d05322d5289b096df9f7f8aaaff2630e603</originalsourceid><addsrcrecordid>eNpd0U1LxDAQBuAgiq4fB_-ABLzooZp0mm57XMQvWNiLgreSbWZ2I21Tk_aw_96UVQ-SQ16Ghzm8w9ilFHcS8ux-sbrLAIoSDtgslUolIHN1yGYxlolMi48TdhrCpxCgsnJ-zE5ApUIUkM1Y87b1iImxLXbBuk433Fiiccq8dkhka4vdwFvUYfTYTnm945o32m-QG-yHbeIoIYuN4d4NerDdhvfORhh6j9pwGrt6iAvP2RHpJuDFz3_G3p8e3x5ekuXq-fVhsUxqkDAktI4PUEkFWUlG51qSqA1gHFBhhII0NSotyrUoc0MlzanQWhOlOQjMBZyxm_3e3ruvEcNQtTbU2DS6QzeGKrq0mMrII73-Rz_d6GMNkxKllHMJRVS3e1V7F4JHqnpvW-13lRTVdIJqsar2J4j26mfjuG7R_MnfzuEb4vqCRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2609117138</pqid></control><display><type>article</type><title>Three-dimensional diffusion coefficient measurement by a large depth-of-field rotating point spread function</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Wang, Famin ; Li, Hangfeng ; Ji, Lin ; Zhao, Mengyuan ; Miu, Xin ; Zhang, Yunhai ; Huang, Wei ; Wei, Tongda</creator><creatorcontrib>Wang, Famin ; Li, Hangfeng ; Ji, Lin ; Zhao, Mengyuan ; Miu, Xin ; Zhang, Yunhai ; Huang, Wei ; Wei, Tongda</creatorcontrib><description>A prominent challenge in single-molecule localization microscopy is the real-time, fast, and accurate localization of nano-objects moving in three-dimensional (3D) samples. A well-established method for 3D single-molecule localization is the double-helix pointspread-function (DH-PSF) engineering, which uses additional optical elements to make the PSF exhibit different rotation angles with different nanoparticle depths. However, the compact main lobe size, effective detection depth, and precise conversion between rotation angle and depth are necessary, posing challenges to the DH-PSF generation method. Here we generate a more compact DH-PSF using Fresnel-zone-based spiral phases, and the pure phase mask achieves high transmission efficiency. The final generated DH-PSFs have a linear rotation rate at each axial position, showing a more accurate rotation angle and depth conversion. The Cramer-Rao lower limit calculation results show that the axial depth of DH-PSF extends to ∼11µ with an axial localization precision of ∼45 at 3000 photons and average background noise of 15. We measured the diffusion coefficient of nanospheres in different concentrations of glycerol using the generated DH-PSF. The measured results are within 6% error from the theoretical values, indicating the superior performance of the DH-PSF for nanoparticle diffusion coefficient measurements.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.433893</identifier><identifier>PMID: 35200834</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Background noise ; Conversion ; Depth of field ; Diffusion ; Diffusion coefficient ; Error analysis ; Localization ; Nanoparticles ; Nanospheres ; Optical components ; Point spread functions ; Rotation ; Transmission efficiency</subject><ispartof>Applied optics (2004), 2021-12, Vol.60 (35), p.10766-10771</ispartof><rights>Copyright Optical Society of America Dec 10, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-fbfbf3e515349fda6a1f0cd3e153f8d05322d5289b096df9f7f8aaaff2630e603</citedby><cites>FETCH-LOGICAL-c313t-fbfbf3e515349fda6a1f0cd3e153f8d05322d5289b096df9f7f8aaaff2630e603</cites><orcidid>0000-0001-9644-5052 ; 0000-0001-6821-576X ; 0000-0001-7618-8570</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35200834$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Famin</creatorcontrib><creatorcontrib>Li, Hangfeng</creatorcontrib><creatorcontrib>Ji, Lin</creatorcontrib><creatorcontrib>Zhao, Mengyuan</creatorcontrib><creatorcontrib>Miu, Xin</creatorcontrib><creatorcontrib>Zhang, Yunhai</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Wei, Tongda</creatorcontrib><title>Three-dimensional diffusion coefficient measurement by a large depth-of-field rotating point spread function</title><title>Applied optics (2004)</title><addtitle>Appl Opt</addtitle><description>A prominent challenge in single-molecule localization microscopy is the real-time, fast, and accurate localization of nano-objects moving in three-dimensional (3D) samples. A well-established method for 3D single-molecule localization is the double-helix pointspread-function (DH-PSF) engineering, which uses additional optical elements to make the PSF exhibit different rotation angles with different nanoparticle depths. However, the compact main lobe size, effective detection depth, and precise conversion between rotation angle and depth are necessary, posing challenges to the DH-PSF generation method. Here we generate a more compact DH-PSF using Fresnel-zone-based spiral phases, and the pure phase mask achieves high transmission efficiency. The final generated DH-PSFs have a linear rotation rate at each axial position, showing a more accurate rotation angle and depth conversion. The Cramer-Rao lower limit calculation results show that the axial depth of DH-PSF extends to ∼11µ with an axial localization precision of ∼45 at 3000 photons and average background noise of 15. We measured the diffusion coefficient of nanospheres in different concentrations of glycerol using the generated DH-PSF. The measured results are within 6% error from the theoretical values, indicating the superior performance of the DH-PSF for nanoparticle diffusion coefficient measurements.</description><subject>Background noise</subject><subject>Conversion</subject><subject>Depth of field</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Error analysis</subject><subject>Localization</subject><subject>Nanoparticles</subject><subject>Nanospheres</subject><subject>Optical components</subject><subject>Point spread functions</subject><subject>Rotation</subject><subject>Transmission efficiency</subject><issn>1559-128X</issn><issn>2155-3165</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0U1LxDAQBuAgiq4fB_-ABLzooZp0mm57XMQvWNiLgreSbWZ2I21Tk_aw_96UVQ-SQ16Ghzm8w9ilFHcS8ux-sbrLAIoSDtgslUolIHN1yGYxlolMi48TdhrCpxCgsnJ-zE5ApUIUkM1Y87b1iImxLXbBuk433Fiiccq8dkhka4vdwFvUYfTYTnm945o32m-QG-yHbeIoIYuN4d4NerDdhvfORhh6j9pwGrt6iAvP2RHpJuDFz3_G3p8e3x5ekuXq-fVhsUxqkDAktI4PUEkFWUlG51qSqA1gHFBhhII0NSotyrUoc0MlzanQWhOlOQjMBZyxm_3e3ruvEcNQtTbU2DS6QzeGKrq0mMrII73-Rz_d6GMNkxKllHMJRVS3e1V7F4JHqnpvW-13lRTVdIJqsar2J4j26mfjuG7R_MnfzuEb4vqCRA</recordid><startdate>20211210</startdate><enddate>20211210</enddate><creator>Wang, Famin</creator><creator>Li, Hangfeng</creator><creator>Ji, Lin</creator><creator>Zhao, Mengyuan</creator><creator>Miu, Xin</creator><creator>Zhang, Yunhai</creator><creator>Huang, Wei</creator><creator>Wei, Tongda</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9644-5052</orcidid><orcidid>https://orcid.org/0000-0001-6821-576X</orcidid><orcidid>https://orcid.org/0000-0001-7618-8570</orcidid></search><sort><creationdate>20211210</creationdate><title>Three-dimensional diffusion coefficient measurement by a large depth-of-field rotating point spread function</title><author>Wang, Famin ; Li, Hangfeng ; Ji, Lin ; Zhao, Mengyuan ; Miu, Xin ; Zhang, Yunhai ; Huang, Wei ; Wei, Tongda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-fbfbf3e515349fda6a1f0cd3e153f8d05322d5289b096df9f7f8aaaff2630e603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Background noise</topic><topic>Conversion</topic><topic>Depth of field</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Error analysis</topic><topic>Localization</topic><topic>Nanoparticles</topic><topic>Nanospheres</topic><topic>Optical components</topic><topic>Point spread functions</topic><topic>Rotation</topic><topic>Transmission efficiency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Famin</creatorcontrib><creatorcontrib>Li, Hangfeng</creatorcontrib><creatorcontrib>Ji, Lin</creatorcontrib><creatorcontrib>Zhao, Mengyuan</creatorcontrib><creatorcontrib>Miu, Xin</creatorcontrib><creatorcontrib>Zhang, Yunhai</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Wei, Tongda</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Famin</au><au>Li, Hangfeng</au><au>Ji, Lin</au><au>Zhao, Mengyuan</au><au>Miu, Xin</au><au>Zhang, Yunhai</au><au>Huang, Wei</au><au>Wei, Tongda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional diffusion coefficient measurement by a large depth-of-field rotating point spread function</atitle><jtitle>Applied optics (2004)</jtitle><addtitle>Appl Opt</addtitle><date>2021-12-10</date><risdate>2021</risdate><volume>60</volume><issue>35</issue><spage>10766</spage><epage>10771</epage><pages>10766-10771</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><eissn>1539-4522</eissn><abstract>A prominent challenge in single-molecule localization microscopy is the real-time, fast, and accurate localization of nano-objects moving in three-dimensional (3D) samples. A well-established method for 3D single-molecule localization is the double-helix pointspread-function (DH-PSF) engineering, which uses additional optical elements to make the PSF exhibit different rotation angles with different nanoparticle depths. However, the compact main lobe size, effective detection depth, and precise conversion between rotation angle and depth are necessary, posing challenges to the DH-PSF generation method. Here we generate a more compact DH-PSF using Fresnel-zone-based spiral phases, and the pure phase mask achieves high transmission efficiency. The final generated DH-PSFs have a linear rotation rate at each axial position, showing a more accurate rotation angle and depth conversion. The Cramer-Rao lower limit calculation results show that the axial depth of DH-PSF extends to ∼11µ with an axial localization precision of ∼45 at 3000 photons and average background noise of 15. We measured the diffusion coefficient of nanospheres in different concentrations of glycerol using the generated DH-PSF. The measured results are within 6% error from the theoretical values, indicating the superior performance of the DH-PSF for nanoparticle diffusion coefficient measurements.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>35200834</pmid><doi>10.1364/AO.433893</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9644-5052</orcidid><orcidid>https://orcid.org/0000-0001-6821-576X</orcidid><orcidid>https://orcid.org/0000-0001-7618-8570</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1559-128X
ispartof Applied optics (2004), 2021-12, Vol.60 (35), p.10766-10771
issn 1559-128X
2155-3165
1539-4522
language eng
recordid cdi_proquest_miscellaneous_2632803546
source Alma/SFX Local Collection; Optica Publishing Group Journals
subjects Background noise
Conversion
Depth of field
Diffusion
Diffusion coefficient
Error analysis
Localization
Nanoparticles
Nanospheres
Optical components
Point spread functions
Rotation
Transmission efficiency
title Three-dimensional diffusion coefficient measurement by a large depth-of-field rotating point spread function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A22%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20diffusion%20coefficient%20measurement%20by%20a%20large%20depth-of-field%20rotating%20point%20spread%20function&rft.jtitle=Applied%20optics%20(2004)&rft.au=Wang,%20Famin&rft.date=2021-12-10&rft.volume=60&rft.issue=35&rft.spage=10766&rft.epage=10771&rft.pages=10766-10771&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.433893&rft_dat=%3Cproquest_cross%3E2609117138%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2609117138&rft_id=info:pmid/35200834&rfr_iscdi=true