Three-dimensional diffusion coefficient measurement by a large depth-of-field rotating point spread function
A prominent challenge in single-molecule localization microscopy is the real-time, fast, and accurate localization of nano-objects moving in three-dimensional (3D) samples. A well-established method for 3D single-molecule localization is the double-helix pointspread-function (DH-PSF) engineering, wh...
Gespeichert in:
Veröffentlicht in: | Applied optics (2004) 2021-12, Vol.60 (35), p.10766-10771 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10771 |
---|---|
container_issue | 35 |
container_start_page | 10766 |
container_title | Applied optics (2004) |
container_volume | 60 |
creator | Wang, Famin Li, Hangfeng Ji, Lin Zhao, Mengyuan Miu, Xin Zhang, Yunhai Huang, Wei Wei, Tongda |
description | A prominent challenge in single-molecule localization microscopy is the real-time, fast, and accurate localization of nano-objects moving in three-dimensional (3D) samples. A well-established method for 3D single-molecule localization is the double-helix pointspread-function (DH-PSF) engineering, which uses additional optical elements to make the PSF exhibit different rotation angles with different nanoparticle depths. However, the compact main lobe size, effective detection depth, and precise conversion between rotation angle and depth are necessary, posing challenges to the DH-PSF generation method. Here we generate a more compact DH-PSF using Fresnel-zone-based spiral phases, and the pure phase mask achieves high transmission efficiency. The final generated DH-PSFs have a linear rotation rate at each axial position, showing a more accurate rotation angle and depth conversion. The Cramer-Rao lower limit calculation results show that the axial depth of DH-PSF extends to ∼11µ
with an axial localization precision of ∼45
at 3000 photons and average background noise of 15. We measured the diffusion coefficient of nanospheres in different concentrations of glycerol using the generated DH-PSF. The measured results are within 6% error from the theoretical values, indicating the superior performance of the DH-PSF for nanoparticle diffusion coefficient measurements. |
doi_str_mv | 10.1364/AO.433893 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2632803546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2609117138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-fbfbf3e515349fda6a1f0cd3e153f8d05322d5289b096df9f7f8aaaff2630e603</originalsourceid><addsrcrecordid>eNpd0U1LxDAQBuAgiq4fB_-ABLzooZp0mm57XMQvWNiLgreSbWZ2I21Tk_aw_96UVQ-SQ16Ghzm8w9ilFHcS8ux-sbrLAIoSDtgslUolIHN1yGYxlolMi48TdhrCpxCgsnJ-zE5ApUIUkM1Y87b1iImxLXbBuk433Fiiccq8dkhka4vdwFvUYfTYTnm945o32m-QG-yHbeIoIYuN4d4NerDdhvfORhh6j9pwGrt6iAvP2RHpJuDFz3_G3p8e3x5ekuXq-fVhsUxqkDAktI4PUEkFWUlG51qSqA1gHFBhhII0NSotyrUoc0MlzanQWhOlOQjMBZyxm_3e3ruvEcNQtTbU2DS6QzeGKrq0mMrII73-Rz_d6GMNkxKllHMJRVS3e1V7F4JHqnpvW-13lRTVdIJqsar2J4j26mfjuG7R_MnfzuEb4vqCRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2609117138</pqid></control><display><type>article</type><title>Three-dimensional diffusion coefficient measurement by a large depth-of-field rotating point spread function</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Wang, Famin ; Li, Hangfeng ; Ji, Lin ; Zhao, Mengyuan ; Miu, Xin ; Zhang, Yunhai ; Huang, Wei ; Wei, Tongda</creator><creatorcontrib>Wang, Famin ; Li, Hangfeng ; Ji, Lin ; Zhao, Mengyuan ; Miu, Xin ; Zhang, Yunhai ; Huang, Wei ; Wei, Tongda</creatorcontrib><description>A prominent challenge in single-molecule localization microscopy is the real-time, fast, and accurate localization of nano-objects moving in three-dimensional (3D) samples. A well-established method for 3D single-molecule localization is the double-helix pointspread-function (DH-PSF) engineering, which uses additional optical elements to make the PSF exhibit different rotation angles with different nanoparticle depths. However, the compact main lobe size, effective detection depth, and precise conversion between rotation angle and depth are necessary, posing challenges to the DH-PSF generation method. Here we generate a more compact DH-PSF using Fresnel-zone-based spiral phases, and the pure phase mask achieves high transmission efficiency. The final generated DH-PSFs have a linear rotation rate at each axial position, showing a more accurate rotation angle and depth conversion. The Cramer-Rao lower limit calculation results show that the axial depth of DH-PSF extends to ∼11µ
with an axial localization precision of ∼45
at 3000 photons and average background noise of 15. We measured the diffusion coefficient of nanospheres in different concentrations of glycerol using the generated DH-PSF. The measured results are within 6% error from the theoretical values, indicating the superior performance of the DH-PSF for nanoparticle diffusion coefficient measurements.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.433893</identifier><identifier>PMID: 35200834</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Background noise ; Conversion ; Depth of field ; Diffusion ; Diffusion coefficient ; Error analysis ; Localization ; Nanoparticles ; Nanospheres ; Optical components ; Point spread functions ; Rotation ; Transmission efficiency</subject><ispartof>Applied optics (2004), 2021-12, Vol.60 (35), p.10766-10771</ispartof><rights>Copyright Optical Society of America Dec 10, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-fbfbf3e515349fda6a1f0cd3e153f8d05322d5289b096df9f7f8aaaff2630e603</citedby><cites>FETCH-LOGICAL-c313t-fbfbf3e515349fda6a1f0cd3e153f8d05322d5289b096df9f7f8aaaff2630e603</cites><orcidid>0000-0001-9644-5052 ; 0000-0001-6821-576X ; 0000-0001-7618-8570</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35200834$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Famin</creatorcontrib><creatorcontrib>Li, Hangfeng</creatorcontrib><creatorcontrib>Ji, Lin</creatorcontrib><creatorcontrib>Zhao, Mengyuan</creatorcontrib><creatorcontrib>Miu, Xin</creatorcontrib><creatorcontrib>Zhang, Yunhai</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Wei, Tongda</creatorcontrib><title>Three-dimensional diffusion coefficient measurement by a large depth-of-field rotating point spread function</title><title>Applied optics (2004)</title><addtitle>Appl Opt</addtitle><description>A prominent challenge in single-molecule localization microscopy is the real-time, fast, and accurate localization of nano-objects moving in three-dimensional (3D) samples. A well-established method for 3D single-molecule localization is the double-helix pointspread-function (DH-PSF) engineering, which uses additional optical elements to make the PSF exhibit different rotation angles with different nanoparticle depths. However, the compact main lobe size, effective detection depth, and precise conversion between rotation angle and depth are necessary, posing challenges to the DH-PSF generation method. Here we generate a more compact DH-PSF using Fresnel-zone-based spiral phases, and the pure phase mask achieves high transmission efficiency. The final generated DH-PSFs have a linear rotation rate at each axial position, showing a more accurate rotation angle and depth conversion. The Cramer-Rao lower limit calculation results show that the axial depth of DH-PSF extends to ∼11µ
with an axial localization precision of ∼45
at 3000 photons and average background noise of 15. We measured the diffusion coefficient of nanospheres in different concentrations of glycerol using the generated DH-PSF. The measured results are within 6% error from the theoretical values, indicating the superior performance of the DH-PSF for nanoparticle diffusion coefficient measurements.</description><subject>Background noise</subject><subject>Conversion</subject><subject>Depth of field</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Error analysis</subject><subject>Localization</subject><subject>Nanoparticles</subject><subject>Nanospheres</subject><subject>Optical components</subject><subject>Point spread functions</subject><subject>Rotation</subject><subject>Transmission efficiency</subject><issn>1559-128X</issn><issn>2155-3165</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0U1LxDAQBuAgiq4fB_-ABLzooZp0mm57XMQvWNiLgreSbWZ2I21Tk_aw_96UVQ-SQ16Ghzm8w9ilFHcS8ux-sbrLAIoSDtgslUolIHN1yGYxlolMi48TdhrCpxCgsnJ-zE5ApUIUkM1Y87b1iImxLXbBuk433Fiiccq8dkhka4vdwFvUYfTYTnm945o32m-QG-yHbeIoIYuN4d4NerDdhvfORhh6j9pwGrt6iAvP2RHpJuDFz3_G3p8e3x5ekuXq-fVhsUxqkDAktI4PUEkFWUlG51qSqA1gHFBhhII0NSotyrUoc0MlzanQWhOlOQjMBZyxm_3e3ruvEcNQtTbU2DS6QzeGKrq0mMrII73-Rz_d6GMNkxKllHMJRVS3e1V7F4JHqnpvW-13lRTVdIJqsar2J4j26mfjuG7R_MnfzuEb4vqCRA</recordid><startdate>20211210</startdate><enddate>20211210</enddate><creator>Wang, Famin</creator><creator>Li, Hangfeng</creator><creator>Ji, Lin</creator><creator>Zhao, Mengyuan</creator><creator>Miu, Xin</creator><creator>Zhang, Yunhai</creator><creator>Huang, Wei</creator><creator>Wei, Tongda</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9644-5052</orcidid><orcidid>https://orcid.org/0000-0001-6821-576X</orcidid><orcidid>https://orcid.org/0000-0001-7618-8570</orcidid></search><sort><creationdate>20211210</creationdate><title>Three-dimensional diffusion coefficient measurement by a large depth-of-field rotating point spread function</title><author>Wang, Famin ; Li, Hangfeng ; Ji, Lin ; Zhao, Mengyuan ; Miu, Xin ; Zhang, Yunhai ; Huang, Wei ; Wei, Tongda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-fbfbf3e515349fda6a1f0cd3e153f8d05322d5289b096df9f7f8aaaff2630e603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Background noise</topic><topic>Conversion</topic><topic>Depth of field</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Error analysis</topic><topic>Localization</topic><topic>Nanoparticles</topic><topic>Nanospheres</topic><topic>Optical components</topic><topic>Point spread functions</topic><topic>Rotation</topic><topic>Transmission efficiency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Famin</creatorcontrib><creatorcontrib>Li, Hangfeng</creatorcontrib><creatorcontrib>Ji, Lin</creatorcontrib><creatorcontrib>Zhao, Mengyuan</creatorcontrib><creatorcontrib>Miu, Xin</creatorcontrib><creatorcontrib>Zhang, Yunhai</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Wei, Tongda</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Famin</au><au>Li, Hangfeng</au><au>Ji, Lin</au><au>Zhao, Mengyuan</au><au>Miu, Xin</au><au>Zhang, Yunhai</au><au>Huang, Wei</au><au>Wei, Tongda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional diffusion coefficient measurement by a large depth-of-field rotating point spread function</atitle><jtitle>Applied optics (2004)</jtitle><addtitle>Appl Opt</addtitle><date>2021-12-10</date><risdate>2021</risdate><volume>60</volume><issue>35</issue><spage>10766</spage><epage>10771</epage><pages>10766-10771</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><eissn>1539-4522</eissn><abstract>A prominent challenge in single-molecule localization microscopy is the real-time, fast, and accurate localization of nano-objects moving in three-dimensional (3D) samples. A well-established method for 3D single-molecule localization is the double-helix pointspread-function (DH-PSF) engineering, which uses additional optical elements to make the PSF exhibit different rotation angles with different nanoparticle depths. However, the compact main lobe size, effective detection depth, and precise conversion between rotation angle and depth are necessary, posing challenges to the DH-PSF generation method. Here we generate a more compact DH-PSF using Fresnel-zone-based spiral phases, and the pure phase mask achieves high transmission efficiency. The final generated DH-PSFs have a linear rotation rate at each axial position, showing a more accurate rotation angle and depth conversion. The Cramer-Rao lower limit calculation results show that the axial depth of DH-PSF extends to ∼11µ
with an axial localization precision of ∼45
at 3000 photons and average background noise of 15. We measured the diffusion coefficient of nanospheres in different concentrations of glycerol using the generated DH-PSF. The measured results are within 6% error from the theoretical values, indicating the superior performance of the DH-PSF for nanoparticle diffusion coefficient measurements.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>35200834</pmid><doi>10.1364/AO.433893</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9644-5052</orcidid><orcidid>https://orcid.org/0000-0001-6821-576X</orcidid><orcidid>https://orcid.org/0000-0001-7618-8570</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1559-128X |
ispartof | Applied optics (2004), 2021-12, Vol.60 (35), p.10766-10771 |
issn | 1559-128X 2155-3165 1539-4522 |
language | eng |
recordid | cdi_proquest_miscellaneous_2632803546 |
source | Alma/SFX Local Collection; Optica Publishing Group Journals |
subjects | Background noise Conversion Depth of field Diffusion Diffusion coefficient Error analysis Localization Nanoparticles Nanospheres Optical components Point spread functions Rotation Transmission efficiency |
title | Three-dimensional diffusion coefficient measurement by a large depth-of-field rotating point spread function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A22%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20diffusion%20coefficient%20measurement%20by%20a%20large%20depth-of-field%20rotating%20point%20spread%20function&rft.jtitle=Applied%20optics%20(2004)&rft.au=Wang,%20Famin&rft.date=2021-12-10&rft.volume=60&rft.issue=35&rft.spage=10766&rft.epage=10771&rft.pages=10766-10771&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.433893&rft_dat=%3Cproquest_cross%3E2609117138%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2609117138&rft_id=info:pmid/35200834&rfr_iscdi=true |