Depth and image recovery using a MRF model

This paper deals with the problem of depth recovery and image restoration from sparse and noisy image data. The image is modeled as a Markov random field and a new energy function is developed to effectively detect discontinuities in highly sparse and noisy images. The model provides an alternative...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 1994-11, Vol.16 (11), p.1117-1122
Hauptverfasser: Kapoor, S., Mundkur, P.Y., Desai, U.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1122
container_issue 11
container_start_page 1117
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 16
creator Kapoor, S.
Mundkur, P.Y.
Desai, U.B.
description This paper deals with the problem of depth recovery and image restoration from sparse and noisy image data. The image is modeled as a Markov random field and a new energy function is developed to effectively detect discontinuities in highly sparse and noisy images. The model provides an alternative to the use of a line process. Interpolation over missing data sites is first done using local characteristics to obtain initial estimates and then simulated annealing is used to compute the maximum a posteriori (MAP) estimate. A threshold on energy reduction per iteration is used to speed up simulated annealing by avoiding computation that contributes little to the energy minimization. Moreover, a minor modification of the posterior energy function gives improved results for random as well as structured sparsing problems. Results of simulations carried out on real range and intensity images along with details of the simulations are presented.< >
doi_str_mv 10.1109/34.334392
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_26324920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>334392</ieee_id><sourcerecordid>28251054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-e8eece2012accaf89f9206fb36c66a81cea07f52c0518bb192d1508a3a9949343</originalsourceid><addsrcrecordid>eNqNkEFLAzEQRoMoWKsHr55yEEFha5LZbJOjtFaFiiB6DtN0Ule2uzVphf57V7eIR09zmDdvZj7GTqUYSCnsNeQDgBys2mM9acFmoMHus56QhcqMUeaQHaX0LoTMtYAeuxrTav3GsZ7zcokL4pF880lxyzeprBcc-ePzhC-bOVXH7CBglehkV_vsdXL7MrrPpk93D6ObaeaVHa4zMkSelJAKvcdgbLBKFGEGhS8KNNITimHQygstzWwmrZpLLQwCWpvb9vY-u-i8q9h8bCit3bJMnqoKa2o2ySmjtBT6H2ABKm-Xt-BlB_rYpBQpuFVsv41bJ4X7js1B7rrYWvZ8J8XksQoRa1-m3wGAYWENtNhZh5VE9Kf74_gCkPpxow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26324920</pqid></control><display><type>article</type><title>Depth and image recovery using a MRF model</title><source>IEEE Electronic Library (IEL)</source><creator>Kapoor, S. ; Mundkur, P.Y. ; Desai, U.B.</creator><creatorcontrib>Kapoor, S. ; Mundkur, P.Y. ; Desai, U.B.</creatorcontrib><description>This paper deals with the problem of depth recovery and image restoration from sparse and noisy image data. The image is modeled as a Markov random field and a new energy function is developed to effectively detect discontinuities in highly sparse and noisy images. The model provides an alternative to the use of a line process. Interpolation over missing data sites is first done using local characteristics to obtain initial estimates and then simulated annealing is used to compute the maximum a posteriori (MAP) estimate. A threshold on energy reduction per iteration is used to speed up simulated annealing by avoiding computation that contributes little to the energy minimization. Moreover, a minor modification of the posterior energy function gives improved results for random as well as structured sparsing problems. Results of simulations carried out on real range and intensity images along with details of the simulations are presented.&lt; &gt;</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/34.334392</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Computational modeling ; Computer science; control theory; systems ; Exact sciences and technology ; Image converters ; Image reconstruction ; Image restoration ; Interpolation ; Lattices ; Markov random fields ; Pattern recognition. Digital image processing. Computational geometry ; Simulated annealing ; Stochastic processes ; Surface reconstruction</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 1994-11, Vol.16 (11), p.1117-1122</ispartof><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c297t-e8eece2012accaf89f9206fb36c66a81cea07f52c0518bb192d1508a3a9949343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/334392$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/334392$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3376983$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kapoor, S.</creatorcontrib><creatorcontrib>Mundkur, P.Y.</creatorcontrib><creatorcontrib>Desai, U.B.</creatorcontrib><title>Depth and image recovery using a MRF model</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>This paper deals with the problem of depth recovery and image restoration from sparse and noisy image data. The image is modeled as a Markov random field and a new energy function is developed to effectively detect discontinuities in highly sparse and noisy images. The model provides an alternative to the use of a line process. Interpolation over missing data sites is first done using local characteristics to obtain initial estimates and then simulated annealing is used to compute the maximum a posteriori (MAP) estimate. A threshold on energy reduction per iteration is used to speed up simulated annealing by avoiding computation that contributes little to the energy minimization. Moreover, a minor modification of the posterior energy function gives improved results for random as well as structured sparsing problems. Results of simulations carried out on real range and intensity images along with details of the simulations are presented.&lt; &gt;</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computational modeling</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Image converters</subject><subject>Image reconstruction</subject><subject>Image restoration</subject><subject>Interpolation</subject><subject>Lattices</subject><subject>Markov random fields</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Simulated annealing</subject><subject>Stochastic processes</subject><subject>Surface reconstruction</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqNkEFLAzEQRoMoWKsHr55yEEFha5LZbJOjtFaFiiB6DtN0Ule2uzVphf57V7eIR09zmDdvZj7GTqUYSCnsNeQDgBys2mM9acFmoMHus56QhcqMUeaQHaX0LoTMtYAeuxrTav3GsZ7zcokL4pF880lxyzeprBcc-ePzhC-bOVXH7CBglehkV_vsdXL7MrrPpk93D6ObaeaVHa4zMkSelJAKvcdgbLBKFGEGhS8KNNITimHQygstzWwmrZpLLQwCWpvb9vY-u-i8q9h8bCit3bJMnqoKa2o2ySmjtBT6H2ABKm-Xt-BlB_rYpBQpuFVsv41bJ4X7js1B7rrYWvZ8J8XksQoRa1-m3wGAYWENtNhZh5VE9Kf74_gCkPpxow</recordid><startdate>19941101</startdate><enddate>19941101</enddate><creator>Kapoor, S.</creator><creator>Mundkur, P.Y.</creator><creator>Desai, U.B.</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19941101</creationdate><title>Depth and image recovery using a MRF model</title><author>Kapoor, S. ; Mundkur, P.Y. ; Desai, U.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-e8eece2012accaf89f9206fb36c66a81cea07f52c0518bb192d1508a3a9949343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computational modeling</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Image converters</topic><topic>Image reconstruction</topic><topic>Image restoration</topic><topic>Interpolation</topic><topic>Lattices</topic><topic>Markov random fields</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Simulated annealing</topic><topic>Stochastic processes</topic><topic>Surface reconstruction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kapoor, S.</creatorcontrib><creatorcontrib>Mundkur, P.Y.</creatorcontrib><creatorcontrib>Desai, U.B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kapoor, S.</au><au>Mundkur, P.Y.</au><au>Desai, U.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Depth and image recovery using a MRF model</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>1994-11-01</date><risdate>1994</risdate><volume>16</volume><issue>11</issue><spage>1117</spage><epage>1122</epage><pages>1117-1122</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>This paper deals with the problem of depth recovery and image restoration from sparse and noisy image data. The image is modeled as a Markov random field and a new energy function is developed to effectively detect discontinuities in highly sparse and noisy images. The model provides an alternative to the use of a line process. Interpolation over missing data sites is first done using local characteristics to obtain initial estimates and then simulated annealing is used to compute the maximum a posteriori (MAP) estimate. A threshold on energy reduction per iteration is used to speed up simulated annealing by avoiding computation that contributes little to the energy minimization. Moreover, a minor modification of the posterior energy function gives improved results for random as well as structured sparsing problems. Results of simulations carried out on real range and intensity images along with details of the simulations are presented.&lt; &gt;</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><doi>10.1109/34.334392</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 1994-11, Vol.16 (11), p.1117-1122
issn 0162-8828
1939-3539
language eng
recordid cdi_proquest_miscellaneous_26324920
source IEEE Electronic Library (IEL)
subjects Applied sciences
Artificial intelligence
Computational modeling
Computer science
control theory
systems
Exact sciences and technology
Image converters
Image reconstruction
Image restoration
Interpolation
Lattices
Markov random fields
Pattern recognition. Digital image processing. Computational geometry
Simulated annealing
Stochastic processes
Surface reconstruction
title Depth and image recovery using a MRF model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A20%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Depth%20and%20image%20recovery%20using%20a%20MRF%20model&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Kapoor,%20S.&rft.date=1994-11-01&rft.volume=16&rft.issue=11&rft.spage=1117&rft.epage=1122&rft.pages=1117-1122&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/34.334392&rft_dat=%3Cproquest_RIE%3E28251054%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26324920&rft_id=info:pmid/&rft_ieee_id=334392&rfr_iscdi=true