Motif structure for the four subgroups within the suprachiasmatic nuclei affects its entrainment ability

Circadian rhythms of physiological and behavioral activities are regulated by a central clock. This clock is located in the bilaterally symmetrical suprachiasmatic nucleus (SCN) of mammals. Each nucleus contains a light-sensitive group of neurons, named the ventrolateral (VL) part, with the rest of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2022-01, Vol.105 (1-1), p.014314-014314, Article 014314
Hauptverfasser: Zheng, Wenxin, Gu, Changgui, Yang, Huijie, Rohling, Jos H T
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Circadian rhythms of physiological and behavioral activities are regulated by a central clock. This clock is located in the bilaterally symmetrical suprachiasmatic nucleus (SCN) of mammals. Each nucleus contains a light-sensitive group of neurons, named the ventrolateral (VL) part, with the rest of the neurons being insensitive to light, named the dorsomedial (DM) group. While the coupling between the VL and DM subgroups have been investigated quite well, the communication among the four subgroups across the nuclei did not get a lot of attention. In this article, we theoretically analyzed seven motiflike connection patterns to investigate the network of the two nuclei of the SCN as a whole in relation to the function of the SCN. We investigated the entrainment ability of the SCN and found that the entrainment range is larger in the motifs containing a link between the two VL parts across the nuclei, but it is smaller in the motifs that contain a link between the two DM parts across the nuclei. The SCN may strengthen or weaken connections between the left and right nucleus to accomodate changes in external conditions, such as resynchronization after a jet lag, adjustment to photoperiod or for the aging SCN.
ISSN:2470-0045
2470-0053
DOI:10.1103/physreve.105.014314