Opto-mechanical accelerometer based on strain sensing by a Bragg grating in a planar waveguide
In this paper we present an opto-mechanical sensor based on a Bragg grating as the strain-sensing element. The motivation for choosing this alternative way of strain sensing is that the sensed information is directly encoded into a wavelength, which is an absolute parameter insensitive to typical in...
Gespeichert in:
Veröffentlicht in: | Sensors and actuators. A. Physical. 1996-03, Vol.52 (1), p.25-32 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we present an opto-mechanical sensor based on a Bragg grating as the strain-sensing element. The motivation for choosing this alternative way of strain sensing is that the sensed information is directly encoded into a wavelength, which is an absolute parameter insensitive to typical intensity and phase noise. Recently, it has been shown that fibre-optic strain sensors based on this technique are capable of resolving dynamic strain down to
0.6 × 10
−9(
Hz)
−1
2
. To demonstrate that this new detection principle can also be used for high-performance microsensors, we have chosen to fabricate a silicon opto-mechanical accelerometer based on strain sensing by a Bragg grating in a planar waveguide. The fabrication of the accelerometer includes KOH wet etching of (110) silicon, controlling stress in PECVD glass waveguides and direct UV writing of Bragg gratings. |
---|---|
ISSN: | 0924-4247 1873-3069 |
DOI: | 10.1016/0924-4247(96)80121-X |