Pressure-Induced Phase Transition and Compression Properties of HfO2 Nanocrystals

Nanoparticles exhibit unique properties due to their surface effects and small size, and their behavior at high pressures has attracted widespread attention in recent years. Herein, a series of in situ high-pressure X-ray diffraction measurements with a synchrotron radiation source and Raman scatter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2022-02, Vol.61 (8), p.3498-3507
Hauptverfasser: Zhang, Wei, Zhang, Jiawei, Zeng, Yingying, Lin, Weitong, Liu, Lei, Guan, Shixue, Zhang, Zhengang, Guo, Huazhong, Peng, Fang, Liang, Hao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3507
container_issue 8
container_start_page 3498
container_title Inorganic chemistry
container_volume 61
creator Zhang, Wei
Zhang, Jiawei
Zeng, Yingying
Lin, Weitong
Liu, Lei
Guan, Shixue
Zhang, Zhengang
Guo, Huazhong
Peng, Fang
Liang, Hao
description Nanoparticles exhibit unique properties due to their surface effects and small size, and their behavior at high pressures has attracted widespread attention in recent years. Herein, a series of in situ high-pressure X-ray diffraction measurements with a synchrotron radiation source and Raman scattering have been performed on HfO2 nanocrystals (NC-HfO2) with different grain sizes using a symmetric diamond anvil cell at ambient temperature. The experimental data reveal that the structural stability, phase transition behavior, and equation of state for HfO2 have an interesting size effect under high pressure. NC-HfO2 quenched to normal pressure is characterized by transmission electron microscopy to determine the changing behavior of grain size during phase transition. We found that the rotation of the nanocrystalline HfO2 grains causes a large strain, resulting in the retention of part of an orthorhombic I (OI) phase in the sample quenched to atmospheric pressure. Furthermore, the physical mechanism of the phase transition of NC-HfO2 under high pressure can be well explained by the first-principles calculations. The calculations demonstrate that NC-HfO2 has a strong surface effect, that is, the surface energy and surface stress can stabilize the structures. These studies may offer new insights into the understanding of the physical behavior of nanocrystal materials under high pressure and provide practical guidance for their realization in industrial applications.
doi_str_mv 10.1021/acs.inorgchem.1c03450
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2630921691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2630921691</sourcerecordid><originalsourceid>FETCH-LOGICAL-a230t-45a394f58bd07d6de22d1763769bccedada047f395171058ae27fb8ee6b01d3e3</originalsourceid><addsrcrecordid>eNo9kMFKw0AQhhdRsFYfQcjRS-rMbnbTPUpRWyi2QgVvYZOd2JR2t-4mB9--CS2e_pnhY_j5GHtEmCBwfDZVnDTOh59qS4cJViAyCVdshJJDKhG-r9kIoJ9RKX3L7mLcAYAWmRqxz3WgGLtA6cLZriKbrLcmUrIJxsWmbbxLjLPJzB-OAzjs6-CPFNqGYuLrZF6vePJhnK_CX2zNPt6zm7oPerjkmH29vW5m83S5el_MXpap4QLaNJNG6KyW09JCbpUlzi3mSuRKl1Xfw1gDWV4LLTFHkFNDPK_LKZEqAa0gMWZP57_H4H87im1xaGJF-71x5LtYcCVAc1QaexTPaG-q2PkuuL5YgVAM-orh-K-vuOgTJ0KCaAc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2630921691</pqid></control><display><type>article</type><title>Pressure-Induced Phase Transition and Compression Properties of HfO2 Nanocrystals</title><source>ACS Publications</source><creator>Zhang, Wei ; Zhang, Jiawei ; Zeng, Yingying ; Lin, Weitong ; Liu, Lei ; Guan, Shixue ; Zhang, Zhengang ; Guo, Huazhong ; Peng, Fang ; Liang, Hao</creator><creatorcontrib>Zhang, Wei ; Zhang, Jiawei ; Zeng, Yingying ; Lin, Weitong ; Liu, Lei ; Guan, Shixue ; Zhang, Zhengang ; Guo, Huazhong ; Peng, Fang ; Liang, Hao</creatorcontrib><description>Nanoparticles exhibit unique properties due to their surface effects and small size, and their behavior at high pressures has attracted widespread attention in recent years. Herein, a series of in situ high-pressure X-ray diffraction measurements with a synchrotron radiation source and Raman scattering have been performed on HfO2 nanocrystals (NC-HfO2) with different grain sizes using a symmetric diamond anvil cell at ambient temperature. The experimental data reveal that the structural stability, phase transition behavior, and equation of state for HfO2 have an interesting size effect under high pressure. NC-HfO2 quenched to normal pressure is characterized by transmission electron microscopy to determine the changing behavior of grain size during phase transition. We found that the rotation of the nanocrystalline HfO2 grains causes a large strain, resulting in the retention of part of an orthorhombic I (OI) phase in the sample quenched to atmospheric pressure. Furthermore, the physical mechanism of the phase transition of NC-HfO2 under high pressure can be well explained by the first-principles calculations. The calculations demonstrate that NC-HfO2 has a strong surface effect, that is, the surface energy and surface stress can stabilize the structures. These studies may offer new insights into the understanding of the physical behavior of nanocrystal materials under high pressure and provide practical guidance for their realization in industrial applications.</description><identifier>ISSN: 0020-1669</identifier><identifier>EISSN: 1520-510X</identifier><identifier>DOI: 10.1021/acs.inorgchem.1c03450</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Inorganic chemistry, 2022-02, Vol.61 (8), p.3498-3507</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4965-4705 ; 0000-0001-7061-8752 ; 0000-0003-4378-5154 ; 0000-0003-3597-8220</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.inorgchem.1c03450$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.inorgchem.1c03450$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Zhang, Jiawei</creatorcontrib><creatorcontrib>Zeng, Yingying</creatorcontrib><creatorcontrib>Lin, Weitong</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Guan, Shixue</creatorcontrib><creatorcontrib>Zhang, Zhengang</creatorcontrib><creatorcontrib>Guo, Huazhong</creatorcontrib><creatorcontrib>Peng, Fang</creatorcontrib><creatorcontrib>Liang, Hao</creatorcontrib><title>Pressure-Induced Phase Transition and Compression Properties of HfO2 Nanocrystals</title><title>Inorganic chemistry</title><addtitle>Inorg. Chem</addtitle><description>Nanoparticles exhibit unique properties due to their surface effects and small size, and their behavior at high pressures has attracted widespread attention in recent years. Herein, a series of in situ high-pressure X-ray diffraction measurements with a synchrotron radiation source and Raman scattering have been performed on HfO2 nanocrystals (NC-HfO2) with different grain sizes using a symmetric diamond anvil cell at ambient temperature. The experimental data reveal that the structural stability, phase transition behavior, and equation of state for HfO2 have an interesting size effect under high pressure. NC-HfO2 quenched to normal pressure is characterized by transmission electron microscopy to determine the changing behavior of grain size during phase transition. We found that the rotation of the nanocrystalline HfO2 grains causes a large strain, resulting in the retention of part of an orthorhombic I (OI) phase in the sample quenched to atmospheric pressure. Furthermore, the physical mechanism of the phase transition of NC-HfO2 under high pressure can be well explained by the first-principles calculations. The calculations demonstrate that NC-HfO2 has a strong surface effect, that is, the surface energy and surface stress can stabilize the structures. These studies may offer new insights into the understanding of the physical behavior of nanocrystal materials under high pressure and provide practical guidance for their realization in industrial applications.</description><issn>0020-1669</issn><issn>1520-510X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kMFKw0AQhhdRsFYfQcjRS-rMbnbTPUpRWyi2QgVvYZOd2JR2t-4mB9--CS2e_pnhY_j5GHtEmCBwfDZVnDTOh59qS4cJViAyCVdshJJDKhG-r9kIoJ9RKX3L7mLcAYAWmRqxz3WgGLtA6cLZriKbrLcmUrIJxsWmbbxLjLPJzB-OAzjs6-CPFNqGYuLrZF6vePJhnK_CX2zNPt6zm7oPerjkmH29vW5m83S5el_MXpap4QLaNJNG6KyW09JCbpUlzi3mSuRKl1Xfw1gDWV4LLTFHkFNDPK_LKZEqAa0gMWZP57_H4H87im1xaGJF-71x5LtYcCVAc1QaexTPaG-q2PkuuL5YgVAM-orh-K-vuOgTJ0KCaAc</recordid><startdate>20220228</startdate><enddate>20220228</enddate><creator>Zhang, Wei</creator><creator>Zhang, Jiawei</creator><creator>Zeng, Yingying</creator><creator>Lin, Weitong</creator><creator>Liu, Lei</creator><creator>Guan, Shixue</creator><creator>Zhang, Zhengang</creator><creator>Guo, Huazhong</creator><creator>Peng, Fang</creator><creator>Liang, Hao</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4965-4705</orcidid><orcidid>https://orcid.org/0000-0001-7061-8752</orcidid><orcidid>https://orcid.org/0000-0003-4378-5154</orcidid><orcidid>https://orcid.org/0000-0003-3597-8220</orcidid></search><sort><creationdate>20220228</creationdate><title>Pressure-Induced Phase Transition and Compression Properties of HfO2 Nanocrystals</title><author>Zhang, Wei ; Zhang, Jiawei ; Zeng, Yingying ; Lin, Weitong ; Liu, Lei ; Guan, Shixue ; Zhang, Zhengang ; Guo, Huazhong ; Peng, Fang ; Liang, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a230t-45a394f58bd07d6de22d1763769bccedada047f395171058ae27fb8ee6b01d3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Zhang, Jiawei</creatorcontrib><creatorcontrib>Zeng, Yingying</creatorcontrib><creatorcontrib>Lin, Weitong</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Guan, Shixue</creatorcontrib><creatorcontrib>Zhang, Zhengang</creatorcontrib><creatorcontrib>Guo, Huazhong</creatorcontrib><creatorcontrib>Peng, Fang</creatorcontrib><creatorcontrib>Liang, Hao</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Wei</au><au>Zhang, Jiawei</au><au>Zeng, Yingying</au><au>Lin, Weitong</au><au>Liu, Lei</au><au>Guan, Shixue</au><au>Zhang, Zhengang</au><au>Guo, Huazhong</au><au>Peng, Fang</au><au>Liang, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pressure-Induced Phase Transition and Compression Properties of HfO2 Nanocrystals</atitle><jtitle>Inorganic chemistry</jtitle><addtitle>Inorg. Chem</addtitle><date>2022-02-28</date><risdate>2022</risdate><volume>61</volume><issue>8</issue><spage>3498</spage><epage>3507</epage><pages>3498-3507</pages><issn>0020-1669</issn><eissn>1520-510X</eissn><abstract>Nanoparticles exhibit unique properties due to their surface effects and small size, and their behavior at high pressures has attracted widespread attention in recent years. Herein, a series of in situ high-pressure X-ray diffraction measurements with a synchrotron radiation source and Raman scattering have been performed on HfO2 nanocrystals (NC-HfO2) with different grain sizes using a symmetric diamond anvil cell at ambient temperature. The experimental data reveal that the structural stability, phase transition behavior, and equation of state for HfO2 have an interesting size effect under high pressure. NC-HfO2 quenched to normal pressure is characterized by transmission electron microscopy to determine the changing behavior of grain size during phase transition. We found that the rotation of the nanocrystalline HfO2 grains causes a large strain, resulting in the retention of part of an orthorhombic I (OI) phase in the sample quenched to atmospheric pressure. Furthermore, the physical mechanism of the phase transition of NC-HfO2 under high pressure can be well explained by the first-principles calculations. The calculations demonstrate that NC-HfO2 has a strong surface effect, that is, the surface energy and surface stress can stabilize the structures. These studies may offer new insights into the understanding of the physical behavior of nanocrystal materials under high pressure and provide practical guidance for their realization in industrial applications.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.inorgchem.1c03450</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4965-4705</orcidid><orcidid>https://orcid.org/0000-0001-7061-8752</orcidid><orcidid>https://orcid.org/0000-0003-4378-5154</orcidid><orcidid>https://orcid.org/0000-0003-3597-8220</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0020-1669
ispartof Inorganic chemistry, 2022-02, Vol.61 (8), p.3498-3507
issn 0020-1669
1520-510X
language eng
recordid cdi_proquest_miscellaneous_2630921691
source ACS Publications
title Pressure-Induced Phase Transition and Compression Properties of HfO2 Nanocrystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A47%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pressure-Induced%20Phase%20Transition%20and%20Compression%20Properties%20of%20HfO2%20Nanocrystals&rft.jtitle=Inorganic%20chemistry&rft.au=Zhang,%20Wei&rft.date=2022-02-28&rft.volume=61&rft.issue=8&rft.spage=3498&rft.epage=3507&rft.pages=3498-3507&rft.issn=0020-1669&rft.eissn=1520-510X&rft_id=info:doi/10.1021/acs.inorgchem.1c03450&rft_dat=%3Cproquest_acs_j%3E2630921691%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2630921691&rft_id=info:pmid/&rfr_iscdi=true