Effect of Flexibility and Size of Nanofabricated Topographies on the Mechanobactericidal Efficacy of Polymeric Surfaces

Driven by the growing threat of antimicrobial resistance, the design of intrinsically bactericidal surfaces has been gaining significant attention. Proposed surface topography designs are often inspired by naturally occurring nanopatterns on insect wings that mechanically damage bacteria via membran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied bio materials 2022-04, Vol.5 (4), p.1564-1575
Hauptverfasser: Lohmann, Sophie C, Tripathy, Abinash, Milionis, Athanasios, Keller, Anja, Poulikakos, Dimos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1575
container_issue 4
container_start_page 1564
container_title ACS applied bio materials
container_volume 5
creator Lohmann, Sophie C
Tripathy, Abinash
Milionis, Athanasios
Keller, Anja
Poulikakos, Dimos
description Driven by the growing threat of antimicrobial resistance, the design of intrinsically bactericidal surfaces has been gaining significant attention. Proposed surface topography designs are often inspired by naturally occurring nanopatterns on insect wings that mechanically damage bacteria via membrane deformation. The stability of and the absence of chemicals in such surfaces support their facile and sustainable employment in avoiding surface-born pathogen transmission. Recently, the deflection of controllably nanofabricated pillar arrays has been shown to strongly affect bactericidal activity, with the limits of mechanical effectiveness of such structures remaining largely unexplored. Here, we examine the limits of softer, commonly used polymeric materials and investigate the interplay between pillar nanostructure sizing and flexibility for effective antibacterial functionality. A facile, scalable, UV nanoimprint lithography method was used to fabricate nanopillar array topographies of variable sizes and flexibilities. It was found that bacterial death on nanopillars in the range of diameters ≤100 nm and Young’s moduli ≥1.3 GPa is increased by 3.5- to 5.6-fold, while thicker or softer pillars did not reduce bacterial viability. To further support our findings, we performed a finite element analysis of pillar deformation. It revealed that differences in the amount of stress exerted on bacterial membranes, generated from the stored elastic energy in flexible pillars, contribute to the observed bactericidal performance.
doi_str_mv 10.1021/acsabm.1c01318
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2630921278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2630921278</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-e5d1e7487c59a08b2d5458ee5cee389a6364148a0b0c4edc942201eade2af7553</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMoKurVo-QoQtckbdr0KOKqsH6Aei7TdOpG2mZNWnT99aZ0FS-eJkye94F5CTnmbMaZ4OegPZTtjGvGY662yL6QWRqliRDbf9575Mj7N8aYYCxg-S7ZiyXPUiXVPvm4qmvUPbU1nTf4aUrTmH5Noavok_nCcX8Pna2hdEZDjxV9tiv76mC1NOip7Wi_RHqHehmoEnSPgTMVNDSIQ0KvR8Wjbdbt-EOfBleDRn9IdmpoPB5t5gF5mV89X95Ei4fr28uLRQRxnvYRyopjlqhMyxyYKkUlE6kQpUaMVQ5pnCY8UcBKphOsdB7uZRyhQgF1JmV8QE4n78rZ9wF9X7TGa2wa6NAOvhBpzHLBRaYCOptQ7az3Duti5UwLbl1wVox9F1PfxabvEDjZuIeyxeoX_2k3AGcTEILFmx1cF079z_YN7C2Lqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2630921278</pqid></control><display><type>article</type><title>Effect of Flexibility and Size of Nanofabricated Topographies on the Mechanobactericidal Efficacy of Polymeric Surfaces</title><source>ACS Publications</source><source>MEDLINE</source><creator>Lohmann, Sophie C ; Tripathy, Abinash ; Milionis, Athanasios ; Keller, Anja ; Poulikakos, Dimos</creator><creatorcontrib>Lohmann, Sophie C ; Tripathy, Abinash ; Milionis, Athanasios ; Keller, Anja ; Poulikakos, Dimos</creatorcontrib><description>Driven by the growing threat of antimicrobial resistance, the design of intrinsically bactericidal surfaces has been gaining significant attention. Proposed surface topography designs are often inspired by naturally occurring nanopatterns on insect wings that mechanically damage bacteria via membrane deformation. The stability of and the absence of chemicals in such surfaces support their facile and sustainable employment in avoiding surface-born pathogen transmission. Recently, the deflection of controllably nanofabricated pillar arrays has been shown to strongly affect bactericidal activity, with the limits of mechanical effectiveness of such structures remaining largely unexplored. Here, we examine the limits of softer, commonly used polymeric materials and investigate the interplay between pillar nanostructure sizing and flexibility for effective antibacterial functionality. A facile, scalable, UV nanoimprint lithography method was used to fabricate nanopillar array topographies of variable sizes and flexibilities. It was found that bacterial death on nanopillars in the range of diameters ≤100 nm and Young’s moduli ≥1.3 GPa is increased by 3.5- to 5.6-fold, while thicker or softer pillars did not reduce bacterial viability. To further support our findings, we performed a finite element analysis of pillar deformation. It revealed that differences in the amount of stress exerted on bacterial membranes, generated from the stored elastic energy in flexible pillars, contribute to the observed bactericidal performance.</description><identifier>ISSN: 2576-6422</identifier><identifier>EISSN: 2576-6422</identifier><identifier>DOI: 10.1021/acsabm.1c01318</identifier><identifier>PMID: 35176858</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Anti-Bacterial Agents - pharmacology ; Bacteria ; Microbial Viability ; Nanostructures - chemistry ; Polymers - pharmacology</subject><ispartof>ACS applied bio materials, 2022-04, Vol.5 (4), p.1564-1575</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-e5d1e7487c59a08b2d5458ee5cee389a6364148a0b0c4edc942201eade2af7553</citedby><cites>FETCH-LOGICAL-a396t-e5d1e7487c59a08b2d5458ee5cee389a6364148a0b0c4edc942201eade2af7553</cites><orcidid>0000-0003-0330-5072 ; 0000-0002-0049-1255 ; 0000-0001-5733-6478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsabm.1c01318$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsabm.1c01318$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35176858$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lohmann, Sophie C</creatorcontrib><creatorcontrib>Tripathy, Abinash</creatorcontrib><creatorcontrib>Milionis, Athanasios</creatorcontrib><creatorcontrib>Keller, Anja</creatorcontrib><creatorcontrib>Poulikakos, Dimos</creatorcontrib><title>Effect of Flexibility and Size of Nanofabricated Topographies on the Mechanobactericidal Efficacy of Polymeric Surfaces</title><title>ACS applied bio materials</title><addtitle>ACS Appl. Bio Mater</addtitle><description>Driven by the growing threat of antimicrobial resistance, the design of intrinsically bactericidal surfaces has been gaining significant attention. Proposed surface topography designs are often inspired by naturally occurring nanopatterns on insect wings that mechanically damage bacteria via membrane deformation. The stability of and the absence of chemicals in such surfaces support their facile and sustainable employment in avoiding surface-born pathogen transmission. Recently, the deflection of controllably nanofabricated pillar arrays has been shown to strongly affect bactericidal activity, with the limits of mechanical effectiveness of such structures remaining largely unexplored. Here, we examine the limits of softer, commonly used polymeric materials and investigate the interplay between pillar nanostructure sizing and flexibility for effective antibacterial functionality. A facile, scalable, UV nanoimprint lithography method was used to fabricate nanopillar array topographies of variable sizes and flexibilities. It was found that bacterial death on nanopillars in the range of diameters ≤100 nm and Young’s moduli ≥1.3 GPa is increased by 3.5- to 5.6-fold, while thicker or softer pillars did not reduce bacterial viability. To further support our findings, we performed a finite element analysis of pillar deformation. It revealed that differences in the amount of stress exerted on bacterial membranes, generated from the stored elastic energy in flexible pillars, contribute to the observed bactericidal performance.</description><subject>Animals</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Bacteria</subject><subject>Microbial Viability</subject><subject>Nanostructures - chemistry</subject><subject>Polymers - pharmacology</subject><issn>2576-6422</issn><issn>2576-6422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1LxDAQhoMoKurVo-QoQtckbdr0KOKqsH6Aei7TdOpG2mZNWnT99aZ0FS-eJkye94F5CTnmbMaZ4OegPZTtjGvGY662yL6QWRqliRDbf9575Mj7N8aYYCxg-S7ZiyXPUiXVPvm4qmvUPbU1nTf4aUrTmH5Noavok_nCcX8Pna2hdEZDjxV9tiv76mC1NOip7Wi_RHqHehmoEnSPgTMVNDSIQ0KvR8Wjbdbt-EOfBleDRn9IdmpoPB5t5gF5mV89X95Ei4fr28uLRQRxnvYRyopjlqhMyxyYKkUlE6kQpUaMVQ5pnCY8UcBKphOsdB7uZRyhQgF1JmV8QE4n78rZ9wF9X7TGa2wa6NAOvhBpzHLBRaYCOptQ7az3Duti5UwLbl1wVox9F1PfxabvEDjZuIeyxeoX_2k3AGcTEILFmx1cF079z_YN7C2Lqg</recordid><startdate>20220418</startdate><enddate>20220418</enddate><creator>Lohmann, Sophie C</creator><creator>Tripathy, Abinash</creator><creator>Milionis, Athanasios</creator><creator>Keller, Anja</creator><creator>Poulikakos, Dimos</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0330-5072</orcidid><orcidid>https://orcid.org/0000-0002-0049-1255</orcidid><orcidid>https://orcid.org/0000-0001-5733-6478</orcidid></search><sort><creationdate>20220418</creationdate><title>Effect of Flexibility and Size of Nanofabricated Topographies on the Mechanobactericidal Efficacy of Polymeric Surfaces</title><author>Lohmann, Sophie C ; Tripathy, Abinash ; Milionis, Athanasios ; Keller, Anja ; Poulikakos, Dimos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-e5d1e7487c59a08b2d5458ee5cee389a6364148a0b0c4edc942201eade2af7553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Bacteria</topic><topic>Microbial Viability</topic><topic>Nanostructures - chemistry</topic><topic>Polymers - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lohmann, Sophie C</creatorcontrib><creatorcontrib>Tripathy, Abinash</creatorcontrib><creatorcontrib>Milionis, Athanasios</creatorcontrib><creatorcontrib>Keller, Anja</creatorcontrib><creatorcontrib>Poulikakos, Dimos</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied bio materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lohmann, Sophie C</au><au>Tripathy, Abinash</au><au>Milionis, Athanasios</au><au>Keller, Anja</au><au>Poulikakos, Dimos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Flexibility and Size of Nanofabricated Topographies on the Mechanobactericidal Efficacy of Polymeric Surfaces</atitle><jtitle>ACS applied bio materials</jtitle><addtitle>ACS Appl. Bio Mater</addtitle><date>2022-04-18</date><risdate>2022</risdate><volume>5</volume><issue>4</issue><spage>1564</spage><epage>1575</epage><pages>1564-1575</pages><issn>2576-6422</issn><eissn>2576-6422</eissn><abstract>Driven by the growing threat of antimicrobial resistance, the design of intrinsically bactericidal surfaces has been gaining significant attention. Proposed surface topography designs are often inspired by naturally occurring nanopatterns on insect wings that mechanically damage bacteria via membrane deformation. The stability of and the absence of chemicals in such surfaces support their facile and sustainable employment in avoiding surface-born pathogen transmission. Recently, the deflection of controllably nanofabricated pillar arrays has been shown to strongly affect bactericidal activity, with the limits of mechanical effectiveness of such structures remaining largely unexplored. Here, we examine the limits of softer, commonly used polymeric materials and investigate the interplay between pillar nanostructure sizing and flexibility for effective antibacterial functionality. A facile, scalable, UV nanoimprint lithography method was used to fabricate nanopillar array topographies of variable sizes and flexibilities. It was found that bacterial death on nanopillars in the range of diameters ≤100 nm and Young’s moduli ≥1.3 GPa is increased by 3.5- to 5.6-fold, while thicker or softer pillars did not reduce bacterial viability. To further support our findings, we performed a finite element analysis of pillar deformation. It revealed that differences in the amount of stress exerted on bacterial membranes, generated from the stored elastic energy in flexible pillars, contribute to the observed bactericidal performance.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35176858</pmid><doi>10.1021/acsabm.1c01318</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0330-5072</orcidid><orcidid>https://orcid.org/0000-0002-0049-1255</orcidid><orcidid>https://orcid.org/0000-0001-5733-6478</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2576-6422
ispartof ACS applied bio materials, 2022-04, Vol.5 (4), p.1564-1575
issn 2576-6422
2576-6422
language eng
recordid cdi_proquest_miscellaneous_2630921278
source ACS Publications; MEDLINE
subjects Animals
Anti-Bacterial Agents - pharmacology
Bacteria
Microbial Viability
Nanostructures - chemistry
Polymers - pharmacology
title Effect of Flexibility and Size of Nanofabricated Topographies on the Mechanobactericidal Efficacy of Polymeric Surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A06%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Flexibility%20and%20Size%20of%20Nanofabricated%20Topographies%20on%20the%20Mechanobactericidal%20Efficacy%20of%20Polymeric%20Surfaces&rft.jtitle=ACS%20applied%20bio%20materials&rft.au=Lohmann,%20Sophie%20C&rft.date=2022-04-18&rft.volume=5&rft.issue=4&rft.spage=1564&rft.epage=1575&rft.pages=1564-1575&rft.issn=2576-6422&rft.eissn=2576-6422&rft_id=info:doi/10.1021/acsabm.1c01318&rft_dat=%3Cproquest_cross%3E2630921278%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2630921278&rft_id=info:pmid/35176858&rfr_iscdi=true