The protective effect of C-phycocyanin in male mouse reproductive system

C-phycocyanin from Spirulina platensis has pharmacological effects such as anti-oxidation, anti-cancer, anti-inflammatory and anti-atherosclerosis activities as well as liver and kidney protection. However, there is little research on C-phycocyanin applied in the field of reproductive medicine, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food & function 2022-03, Vol.13 (5), p.2631-2646
Hauptverfasser: Yang, Fang-Hao, Dong, Xiao-Lei, Liu, Guo-Xiang, Teng, Lei, Wang, Lin, Zhu, Feng, Xu, Feng-Hua, Yang, Yi-Fan, Cao, Can, Chen, Guang, Li, Bing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:C-phycocyanin from Spirulina platensis has pharmacological effects such as anti-oxidation, anti-cancer, anti-inflammatory and anti-atherosclerosis activities as well as liver and kidney protection. However, there is little research on C-phycocyanin applied in the field of reproductive medicine, and it is therefore the focus of the current study. In this study, a GC-1 spg cell model and male mouse reproductive injury model were constructed by TNF α + Smac mimetic + zVAD-fmk (TSZ) and cyclophosphamide (Cy), respectively. It has been proved that C-phycocyanin can increase cell viability and reduce cell death in GC-1 spg cells induced by TSZ. C-phycocyanin could protect the reproductive system of male mice from cyclophosphamide, improve spermatogenesis, sperm quality and fertility, increase the release of testosterone, stabilize the feedback regulation mechanism, and ensure the spermatogenic ability of mice. It could also improve the ability of anti-oxidation. In addition, C-phycocyanin could play a protective role by down-regulating RIPK1, RIPK3, and p-MLKL to inhibit the necroptotic signaling pathway. These results suggest that C-phycocyanin could protect GC-1 spg cells and the reproductive system of male mice from TSZ and cyclophosphamide, and the protective mechanism may be achieved by inhibiting the signal pathway of necroptosis. Therefore, C-phycocyanin could serve as a promising reproductive system protective agent. C-phycocyanin may enter public life as a health product in the future. In this study, cell and animal experiments proved that C-phycocyanin can inhibit the necroptotic signaling pathway by down-regulating RIPK1, RIPK3, and p-MLKL expression.
ISSN:2042-6496
2042-650X
DOI:10.1039/d1fo03741b