Rapid Temperature-Dependent Rheological Measurements of Non-Newtonian Solutions Using a Machine-Learning Aided Microfluidic Rheometer

Biofluids such as synovial fluid, blood plasma, and saliva contain several proteins which impart non-Newtonian properties to the biofluids. The concentration of such protein macromolecules in biofluids is regarded as an important biomarker for the diagnosis of several health conditions, including ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2022-03, Vol.94 (8), p.3617-3628
Hauptverfasser: Del Giudice, Francesco, Barnes, Claire
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3628
container_issue 8
container_start_page 3617
container_title Analytical chemistry (Washington)
container_volume 94
creator Del Giudice, Francesco
Barnes, Claire
description Biofluids such as synovial fluid, blood plasma, and saliva contain several proteins which impart non-Newtonian properties to the biofluids. The concentration of such protein macromolecules in biofluids is regarded as an important biomarker for the diagnosis of several health conditions, including cardiovascular disorders, joint quality, and Alzheimer’s. Existing technologies for the measurements of macromolecules in biofluids are limited; they require a long turnaround time, or require complex protocols, thus calling for alternative, more suitable, methodologies aimed at such measurements. According to the well-established relations for polymer solutions, the concentration of macromolecules in solutions can also be derived via measurement of rheological properties such as shear-viscosity and the longest relaxation time. We here introduce a microfluidic rheometer for rapid simultaneous measurement of shear viscosity and longest relaxation time of non-Newtonian solutions at different temperatures. At variance with previous technologies, our microfluidic rheometer provides a very short turnaround time of around 2 min or less thanks to the implementation of a machine-learning algorithm. We validated our platform on several aqueous solutions of poly­(ethylene oxide). We also performed measurements on hyaluronic acid solutions in the clinical range for joint grade assessment. We observed monotonic behavior with the concentration for both rheological properties, thus speculating on their use as potential rheo-markers, i.e., rheological biomarkers, across several disease states.
doi_str_mv 10.1021/acs.analchem.1c05208
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2629383850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2629383850</sourcerecordid><originalsourceid>FETCH-LOGICAL-a422t-32bd2e4168a440f2b7febdbd34af5b3ce274493f41506ae9b95eb5597f93c71e3</originalsourceid><addsrcrecordid>eNp9kctu1DAUhi0EokPhDRCyxIZNhuNbLsuqXKWZIpV2HTn2ScdVYgc7EeIBeG8cZtoFC1ZHOv7-37I_Ql4z2DLg7L02aau9HswBxy0zoDjUT8iG5VmUdc2fkg0AiIJXAGfkRUr3AIwBK5-TM6FYWXHFN-T3tZ6cpTc4Thj1vEQsPuCE3qKf6fUBwxDunNED3aNO-XTM-0RDT6-CL67w5xy8055-D8Myu-ATvU3O31FN99ocnMdihzr6dXXhLFq6dyaGflicdeZv_4gzxpfkWa-HhK9O85zcfvp4c_ml2H37_PXyYldoyflcCN5ZjpKVtZYSet5VPXa2s0LqXnXCIK-kbEQvmYJSY9M1CjulmqpvhKkYinPy7tg7xfBjwTS3o0sGh0F7DEtqeckbUYtaQUbf_oPehyXm_14poRQvJayUPFL5VSlF7NspulHHXy2DdtXUZk3tg6b2pCnH3pzKl25E-xh68JIBOAJr_PHi_3b-AQy7o2c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635526400</pqid></control><display><type>article</type><title>Rapid Temperature-Dependent Rheological Measurements of Non-Newtonian Solutions Using a Machine-Learning Aided Microfluidic Rheometer</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Del Giudice, Francesco ; Barnes, Claire</creator><creatorcontrib>Del Giudice, Francesco ; Barnes, Claire</creatorcontrib><description>Biofluids such as synovial fluid, blood plasma, and saliva contain several proteins which impart non-Newtonian properties to the biofluids. The concentration of such protein macromolecules in biofluids is regarded as an important biomarker for the diagnosis of several health conditions, including cardiovascular disorders, joint quality, and Alzheimer’s. Existing technologies for the measurements of macromolecules in biofluids are limited; they require a long turnaround time, or require complex protocols, thus calling for alternative, more suitable, methodologies aimed at such measurements. According to the well-established relations for polymer solutions, the concentration of macromolecules in solutions can also be derived via measurement of rheological properties such as shear-viscosity and the longest relaxation time. We here introduce a microfluidic rheometer for rapid simultaneous measurement of shear viscosity and longest relaxation time of non-Newtonian solutions at different temperatures. At variance with previous technologies, our microfluidic rheometer provides a very short turnaround time of around 2 min or less thanks to the implementation of a machine-learning algorithm. We validated our platform on several aqueous solutions of poly­(ethylene oxide). We also performed measurements on hyaluronic acid solutions in the clinical range for joint grade assessment. We observed monotonic behavior with the concentration for both rheological properties, thus speculating on their use as potential rheo-markers, i.e., rheological biomarkers, across several disease states.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.1c05208</identifier><identifier>PMID: 35167252</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Alzheimer's disease ; Aqueous solutions ; Biomarkers ; Blood plasma ; Chemistry ; Ethylene oxide ; Hyaluronic acid ; Learning algorithms ; Machine Learning ; Macromolecules ; Microfluidics ; Microfluidics - methods ; Neurodegenerative diseases ; Polyethylene oxide ; Polymers ; Proteins ; Relaxation time ; Rheological properties ; Rheology ; Rheology - methods ; Rheometers ; Saliva ; Shear viscosity ; Solutions ; Synovial fluid ; Temperature ; Temperature dependence ; Viscosity</subject><ispartof>Analytical chemistry (Washington), 2022-03, Vol.94 (8), p.3617-3628</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Mar 1, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a422t-32bd2e4168a440f2b7febdbd34af5b3ce274493f41506ae9b95eb5597f93c71e3</citedby><cites>FETCH-LOGICAL-a422t-32bd2e4168a440f2b7febdbd34af5b3ce274493f41506ae9b95eb5597f93c71e3</cites><orcidid>0000-0002-9414-6937</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.1c05208$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.1c05208$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35167252$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Del Giudice, Francesco</creatorcontrib><creatorcontrib>Barnes, Claire</creatorcontrib><title>Rapid Temperature-Dependent Rheological Measurements of Non-Newtonian Solutions Using a Machine-Learning Aided Microfluidic Rheometer</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Biofluids such as synovial fluid, blood plasma, and saliva contain several proteins which impart non-Newtonian properties to the biofluids. The concentration of such protein macromolecules in biofluids is regarded as an important biomarker for the diagnosis of several health conditions, including cardiovascular disorders, joint quality, and Alzheimer’s. Existing technologies for the measurements of macromolecules in biofluids are limited; they require a long turnaround time, or require complex protocols, thus calling for alternative, more suitable, methodologies aimed at such measurements. According to the well-established relations for polymer solutions, the concentration of macromolecules in solutions can also be derived via measurement of rheological properties such as shear-viscosity and the longest relaxation time. We here introduce a microfluidic rheometer for rapid simultaneous measurement of shear viscosity and longest relaxation time of non-Newtonian solutions at different temperatures. At variance with previous technologies, our microfluidic rheometer provides a very short turnaround time of around 2 min or less thanks to the implementation of a machine-learning algorithm. We validated our platform on several aqueous solutions of poly­(ethylene oxide). We also performed measurements on hyaluronic acid solutions in the clinical range for joint grade assessment. We observed monotonic behavior with the concentration for both rheological properties, thus speculating on their use as potential rheo-markers, i.e., rheological biomarkers, across several disease states.</description><subject>Algorithms</subject><subject>Alzheimer's disease</subject><subject>Aqueous solutions</subject><subject>Biomarkers</subject><subject>Blood plasma</subject><subject>Chemistry</subject><subject>Ethylene oxide</subject><subject>Hyaluronic acid</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Macromolecules</subject><subject>Microfluidics</subject><subject>Microfluidics - methods</subject><subject>Neurodegenerative diseases</subject><subject>Polyethylene oxide</subject><subject>Polymers</subject><subject>Proteins</subject><subject>Relaxation time</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Rheology - methods</subject><subject>Rheometers</subject><subject>Saliva</subject><subject>Shear viscosity</subject><subject>Solutions</subject><subject>Synovial fluid</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Viscosity</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctu1DAUhi0EokPhDRCyxIZNhuNbLsuqXKWZIpV2HTn2ScdVYgc7EeIBeG8cZtoFC1ZHOv7-37I_Ql4z2DLg7L02aau9HswBxy0zoDjUT8iG5VmUdc2fkg0AiIJXAGfkRUr3AIwBK5-TM6FYWXHFN-T3tZ6cpTc4Thj1vEQsPuCE3qKf6fUBwxDunNED3aNO-XTM-0RDT6-CL67w5xy8055-D8Myu-ATvU3O31FN99ocnMdihzr6dXXhLFq6dyaGflicdeZv_4gzxpfkWa-HhK9O85zcfvp4c_ml2H37_PXyYldoyflcCN5ZjpKVtZYSet5VPXa2s0LqXnXCIK-kbEQvmYJSY9M1CjulmqpvhKkYinPy7tg7xfBjwTS3o0sGh0F7DEtqeckbUYtaQUbf_oPehyXm_14poRQvJayUPFL5VSlF7NspulHHXy2DdtXUZk3tg6b2pCnH3pzKl25E-xh68JIBOAJr_PHi_3b-AQy7o2c</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Del Giudice, Francesco</creator><creator>Barnes, Claire</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9414-6937</orcidid></search><sort><creationdate>20220301</creationdate><title>Rapid Temperature-Dependent Rheological Measurements of Non-Newtonian Solutions Using a Machine-Learning Aided Microfluidic Rheometer</title><author>Del Giudice, Francesco ; Barnes, Claire</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a422t-32bd2e4168a440f2b7febdbd34af5b3ce274493f41506ae9b95eb5597f93c71e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Alzheimer's disease</topic><topic>Aqueous solutions</topic><topic>Biomarkers</topic><topic>Blood plasma</topic><topic>Chemistry</topic><topic>Ethylene oxide</topic><topic>Hyaluronic acid</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Macromolecules</topic><topic>Microfluidics</topic><topic>Microfluidics - methods</topic><topic>Neurodegenerative diseases</topic><topic>Polyethylene oxide</topic><topic>Polymers</topic><topic>Proteins</topic><topic>Relaxation time</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Rheology - methods</topic><topic>Rheometers</topic><topic>Saliva</topic><topic>Shear viscosity</topic><topic>Solutions</topic><topic>Synovial fluid</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Del Giudice, Francesco</creatorcontrib><creatorcontrib>Barnes, Claire</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Del Giudice, Francesco</au><au>Barnes, Claire</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid Temperature-Dependent Rheological Measurements of Non-Newtonian Solutions Using a Machine-Learning Aided Microfluidic Rheometer</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>94</volume><issue>8</issue><spage>3617</spage><epage>3628</epage><pages>3617-3628</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Biofluids such as synovial fluid, blood plasma, and saliva contain several proteins which impart non-Newtonian properties to the biofluids. The concentration of such protein macromolecules in biofluids is regarded as an important biomarker for the diagnosis of several health conditions, including cardiovascular disorders, joint quality, and Alzheimer’s. Existing technologies for the measurements of macromolecules in biofluids are limited; they require a long turnaround time, or require complex protocols, thus calling for alternative, more suitable, methodologies aimed at such measurements. According to the well-established relations for polymer solutions, the concentration of macromolecules in solutions can also be derived via measurement of rheological properties such as shear-viscosity and the longest relaxation time. We here introduce a microfluidic rheometer for rapid simultaneous measurement of shear viscosity and longest relaxation time of non-Newtonian solutions at different temperatures. At variance with previous technologies, our microfluidic rheometer provides a very short turnaround time of around 2 min or less thanks to the implementation of a machine-learning algorithm. We validated our platform on several aqueous solutions of poly­(ethylene oxide). We also performed measurements on hyaluronic acid solutions in the clinical range for joint grade assessment. We observed monotonic behavior with the concentration for both rheological properties, thus speculating on their use as potential rheo-markers, i.e., rheological biomarkers, across several disease states.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35167252</pmid><doi>10.1021/acs.analchem.1c05208</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9414-6937</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2022-03, Vol.94 (8), p.3617-3628
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_2629383850
source MEDLINE; American Chemical Society Journals
subjects Algorithms
Alzheimer's disease
Aqueous solutions
Biomarkers
Blood plasma
Chemistry
Ethylene oxide
Hyaluronic acid
Learning algorithms
Machine Learning
Macromolecules
Microfluidics
Microfluidics - methods
Neurodegenerative diseases
Polyethylene oxide
Polymers
Proteins
Relaxation time
Rheological properties
Rheology
Rheology - methods
Rheometers
Saliva
Shear viscosity
Solutions
Synovial fluid
Temperature
Temperature dependence
Viscosity
title Rapid Temperature-Dependent Rheological Measurements of Non-Newtonian Solutions Using a Machine-Learning Aided Microfluidic Rheometer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T08%3A56%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20Temperature-Dependent%20Rheological%20Measurements%20of%20Non-Newtonian%20Solutions%20Using%20a%20Machine-Learning%20Aided%20Microfluidic%20Rheometer&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Del%20Giudice,%20Francesco&rft.date=2022-03-01&rft.volume=94&rft.issue=8&rft.spage=3617&rft.epage=3628&rft.pages=3617-3628&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.1c05208&rft_dat=%3Cproquest_cross%3E2629383850%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635526400&rft_id=info:pmid/35167252&rfr_iscdi=true