The influence of rainfall and catchment characteristics on runoff generation in urban catchments—a case study in Hebi City of China

An in-depth understanding of the rainfall-runoff process is essential for effective stormwater management. However, the understanding of the hierarchy of rainfall characteristics in terms of their importance in influencing runoff generation is limited. This paper investigates the influence of rainfa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental monitoring and assessment 2022-03, Vol.194 (3), p.188-188, Article 188
Hauptverfasser: Zhao, Danyang, Wei, Tong, Jia, Ziliang, Feng, Jiashen, Kong, Yanhong, Li, Yingxia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An in-depth understanding of the rainfall-runoff process is essential for effective stormwater management. However, the understanding of the hierarchy of rainfall characteristics in terms of their importance in influencing runoff generation is limited. This paper investigates the influence of rainfall characteristics and catchment characteristics on runoff generation in urban catchments. The outcomes showed that there are 4 dominant factors affecting runoff generation: total precipitation TP and maximum 60-min rainfall intensity MAX60 are the two top-ranked factors while average rainfall intensity RI and maximum 5-min rainfall intensity MAX5 are ranked second. Additionally, compared to the moderate rainfall regime (MR), the heavy rainfall regime (HR) tends to produce higher peak flow rates, higher total inflow per unit area, and lower runoff control effect. Note that the antecedent precipitation has a more significant effect on runoff generation and is even the dominant factor when rainstorm events with daily rainfall larger than 50 mm are not considered. The results of analyzing the influence of catchment characteristics suggest that only under HR regime conditions do the catchment characteristics have an impact on runoff generation and behave as smaller catchment areas, and higher proportions of green landscapes always lead lower peak flow rates, lower total inflows per unit area, and higher runoff control effects.
ISSN:0167-6369
1573-2959
DOI:10.1007/s10661-022-09847-3