Impact of Surface Layer Formation during Cycling on the Thermal Stability of the LiNi0.8Co0.1Mn0.1O2 Cathode

In this study, the effects of charge/discharge cycling on the thermal stability of LiNi0.8Co0.1Mn0.1O2, a high-Ni cathode material, are systematically investigated. X-ray diffraction measurements show that there is almost no change in the bulk structure of the cathode after cycling. However, X-ray a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-02, Vol.14 (7), p.8931-8937
Hauptverfasser: Komagata, Shogo, Itou, Yuichi, Kondo, Hiroki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, the effects of charge/discharge cycling on the thermal stability of LiNi0.8Co0.1Mn0.1O2, a high-Ni cathode material, are systematically investigated. X-ray diffraction measurements show that there is almost no change in the bulk structure of the cathode after cycling. However, X-ray absorption fine structure measurements indicate that Ni in the surface layer is reduced and stable rock-salt structures are formed. Differential scanning calorimetry (DSC) measurements show that the heat generation at the lowest temperature, which can trigger thermal runaway in batteries that use high-Ni cathodes, decreases significantly with the formation of rock-salt structures on the active material surface. This finding indicates that the rock-salt layer on the surface enhances the thermal stability of a high-Ni cathode. The change in the total heat generation with degradation, indicated by DSC measurements, is similar to that in the K-edge of Ni (i.e., the Ni valency), suggesting a strong correlation between the heat generation and crystal structure changes during cycling.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.1c20643