Picosecond Dynamics of Colloidal Gold Nanoparticles

Colloidal gold nanoparticles with an average radius of 15 nm have a surface plasmon absorption band at 530 nm. Excitation by laser pulses of 450 fs duration, and wavelength of 600 or 380 nm “bleached” the plasmon band and produced a transient absorption at the wings of the “bleach” spectrum. The tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry (1952) 1996-05, Vol.100 (20), p.8053-8056
Hauptverfasser: Ahmadi, Temer S, Logunov, Stephan L, El-Sayed, Mostafa A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8056
container_issue 20
container_start_page 8053
container_title Journal of physical chemistry (1952)
container_volume 100
creator Ahmadi, Temer S
Logunov, Stephan L
El-Sayed, Mostafa A
description Colloidal gold nanoparticles with an average radius of 15 nm have a surface plasmon absorption band at 530 nm. Excitation by laser pulses of 450 fs duration, and wavelength of 600 or 380 nm “bleached” the plasmon band and produced a transient absorption at the wings of the “bleach” spectrum. The transient absorption was found to have a similar temporal behavior at different wavelengths. Analysis of their temporal behavior showed two time constants:  2.5 ps, and a slower component of >50 ps. Laser excitation close to the plasmon band at 600 nm leads to the formation of “hot” non-Fermi electronic distribution within the colloidal particles. Transient absorption from these “hot” electrons led to different absorptions from that of the plasmon absorption of “cold” electrons. The “hot” electrons relax via electron−phonon coupling in 2.5 ps, and the phonon−phonon relaxation of the lattice occurs in >50 ps. At 380 nm excitation, the amplitude of the blue wing becomes smaller, and the slow component becomes longer, which could be due to possible excitation of the d-band electrons. These results are discussed in terms of Mie theory and a two-temperature model (TTM), and their consequences on the optical absorption spectrum.
doi_str_mv 10.1021/jp960484e
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26284264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26284264</sourcerecordid><originalsourceid>FETCH-LOGICAL-a326t-969e721a525007f8428d5f5fd71acfa02f141e93138169f6ccfe5d96af16b15d3</originalsourceid><addsrcrecordid>eNpt0M1KxDAUhuEgCo6jC--gGwUX1Zz8tV1K1VEctOi4DjFNIGOmqUkHnLu3UnHl6mweXjgfQqeALwETuFr3lcCsZGYPzYAzyHnB8D6aYUxITgVnh-gopTXGGCiFGaKN0yEZHbo2u9l1auN0yoLN6uB9cK3y2SL4NntSXehVHJz2Jh2jA6t8Mie_d47e7m5X9X2-fF481NfLXFEihrwSlSkIKE44xoUtGSlbbrltC1DaKkwsMDAVBVqCqKzQ2hreVkJZEO_AWzpH51O3j-Fza9IgNy5p473qTNgmSQQZo4KN8GKCOoaUorGyj26j4k4Clj-zyL9ZRptP1qXBfP1BFT-kKGjB5ap5lc1L9YgXTS3x6M8mr3SS67CN3fjyP91vM49u-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26284264</pqid></control><display><type>article</type><title>Picosecond Dynamics of Colloidal Gold Nanoparticles</title><source>American Chemical Society Journals</source><creator>Ahmadi, Temer S ; Logunov, Stephan L ; El-Sayed, Mostafa A</creator><creatorcontrib>Ahmadi, Temer S ; Logunov, Stephan L ; El-Sayed, Mostafa A</creatorcontrib><description>Colloidal gold nanoparticles with an average radius of 15 nm have a surface plasmon absorption band at 530 nm. Excitation by laser pulses of 450 fs duration, and wavelength of 600 or 380 nm “bleached” the plasmon band and produced a transient absorption at the wings of the “bleach” spectrum. The transient absorption was found to have a similar temporal behavior at different wavelengths. Analysis of their temporal behavior showed two time constants:  2.5 ps, and a slower component of &gt;50 ps. Laser excitation close to the plasmon band at 600 nm leads to the formation of “hot” non-Fermi electronic distribution within the colloidal particles. Transient absorption from these “hot” electrons led to different absorptions from that of the plasmon absorption of “cold” electrons. The “hot” electrons relax via electron−phonon coupling in 2.5 ps, and the phonon−phonon relaxation of the lattice occurs in &gt;50 ps. At 380 nm excitation, the amplitude of the blue wing becomes smaller, and the slow component becomes longer, which could be due to possible excitation of the d-band electrons. These results are discussed in terms of Mie theory and a two-temperature model (TTM), and their consequences on the optical absorption spectrum.</description><identifier>ISSN: 0022-3654</identifier><identifier>EISSN: 1541-5740</identifier><identifier>DOI: 10.1021/jp960484e</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry (1952), 1996-05, Vol.100 (20), p.8053-8056</ispartof><rights>Copyright © 1996 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a326t-969e721a525007f8428d5f5fd71acfa02f141e93138169f6ccfe5d96af16b15d3</citedby><cites>FETCH-LOGICAL-a326t-969e721a525007f8428d5f5fd71acfa02f141e93138169f6ccfe5d96af16b15d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp960484e$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp960484e$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Ahmadi, Temer S</creatorcontrib><creatorcontrib>Logunov, Stephan L</creatorcontrib><creatorcontrib>El-Sayed, Mostafa A</creatorcontrib><title>Picosecond Dynamics of Colloidal Gold Nanoparticles</title><title>Journal of physical chemistry (1952)</title><addtitle>J. Phys. Chem</addtitle><description>Colloidal gold nanoparticles with an average radius of 15 nm have a surface plasmon absorption band at 530 nm. Excitation by laser pulses of 450 fs duration, and wavelength of 600 or 380 nm “bleached” the plasmon band and produced a transient absorption at the wings of the “bleach” spectrum. The transient absorption was found to have a similar temporal behavior at different wavelengths. Analysis of their temporal behavior showed two time constants:  2.5 ps, and a slower component of &gt;50 ps. Laser excitation close to the plasmon band at 600 nm leads to the formation of “hot” non-Fermi electronic distribution within the colloidal particles. Transient absorption from these “hot” electrons led to different absorptions from that of the plasmon absorption of “cold” electrons. The “hot” electrons relax via electron−phonon coupling in 2.5 ps, and the phonon−phonon relaxation of the lattice occurs in &gt;50 ps. At 380 nm excitation, the amplitude of the blue wing becomes smaller, and the slow component becomes longer, which could be due to possible excitation of the d-band electrons. These results are discussed in terms of Mie theory and a two-temperature model (TTM), and their consequences on the optical absorption spectrum.</description><issn>0022-3654</issn><issn>1541-5740</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNpt0M1KxDAUhuEgCo6jC--gGwUX1Zz8tV1K1VEctOi4DjFNIGOmqUkHnLu3UnHl6mweXjgfQqeALwETuFr3lcCsZGYPzYAzyHnB8D6aYUxITgVnh-gopTXGGCiFGaKN0yEZHbo2u9l1auN0yoLN6uB9cK3y2SL4NntSXehVHJz2Jh2jA6t8Mie_d47e7m5X9X2-fF481NfLXFEihrwSlSkIKE44xoUtGSlbbrltC1DaKkwsMDAVBVqCqKzQ2hreVkJZEO_AWzpH51O3j-Fza9IgNy5p473qTNgmSQQZo4KN8GKCOoaUorGyj26j4k4Clj-zyL9ZRptP1qXBfP1BFT-kKGjB5ap5lc1L9YgXTS3x6M8mr3SS67CN3fjyP91vM49u-w</recordid><startdate>19960516</startdate><enddate>19960516</enddate><creator>Ahmadi, Temer S</creator><creator>Logunov, Stephan L</creator><creator>El-Sayed, Mostafa A</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>19960516</creationdate><title>Picosecond Dynamics of Colloidal Gold Nanoparticles</title><author>Ahmadi, Temer S ; Logunov, Stephan L ; El-Sayed, Mostafa A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a326t-969e721a525007f8428d5f5fd71acfa02f141e93138169f6ccfe5d96af16b15d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmadi, Temer S</creatorcontrib><creatorcontrib>Logunov, Stephan L</creatorcontrib><creatorcontrib>El-Sayed, Mostafa A</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of physical chemistry (1952)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmadi, Temer S</au><au>Logunov, Stephan L</au><au>El-Sayed, Mostafa A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Picosecond Dynamics of Colloidal Gold Nanoparticles</atitle><jtitle>Journal of physical chemistry (1952)</jtitle><addtitle>J. Phys. Chem</addtitle><date>1996-05-16</date><risdate>1996</risdate><volume>100</volume><issue>20</issue><spage>8053</spage><epage>8056</epage><pages>8053-8056</pages><issn>0022-3654</issn><eissn>1541-5740</eissn><abstract>Colloidal gold nanoparticles with an average radius of 15 nm have a surface plasmon absorption band at 530 nm. Excitation by laser pulses of 450 fs duration, and wavelength of 600 or 380 nm “bleached” the plasmon band and produced a transient absorption at the wings of the “bleach” spectrum. The transient absorption was found to have a similar temporal behavior at different wavelengths. Analysis of their temporal behavior showed two time constants:  2.5 ps, and a slower component of &gt;50 ps. Laser excitation close to the plasmon band at 600 nm leads to the formation of “hot” non-Fermi electronic distribution within the colloidal particles. Transient absorption from these “hot” electrons led to different absorptions from that of the plasmon absorption of “cold” electrons. The “hot” electrons relax via electron−phonon coupling in 2.5 ps, and the phonon−phonon relaxation of the lattice occurs in &gt;50 ps. At 380 nm excitation, the amplitude of the blue wing becomes smaller, and the slow component becomes longer, which could be due to possible excitation of the d-band electrons. These results are discussed in terms of Mie theory and a two-temperature model (TTM), and their consequences on the optical absorption spectrum.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp960484e</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3654
ispartof Journal of physical chemistry (1952), 1996-05, Vol.100 (20), p.8053-8056
issn 0022-3654
1541-5740
language eng
recordid cdi_proquest_miscellaneous_26284264
source American Chemical Society Journals
title Picosecond Dynamics of Colloidal Gold Nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T11%3A15%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Picosecond%20Dynamics%20of%20Colloidal%20Gold%20Nanoparticles&rft.jtitle=Journal%20of%20physical%20chemistry%20(1952)&rft.au=Ahmadi,%20Temer%20S&rft.date=1996-05-16&rft.volume=100&rft.issue=20&rft.spage=8053&rft.epage=8056&rft.pages=8053-8056&rft.issn=0022-3654&rft.eissn=1541-5740&rft_id=info:doi/10.1021/jp960484e&rft_dat=%3Cproquest_cross%3E26284264%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26284264&rft_id=info:pmid/&rfr_iscdi=true