Three-dimensional linear prediction and its application to digital angiography
In this article, we apply three-dimensional (3-D) linear least-squares (LS) prediction technique to the processing of digital subtraction angiography (DSA) image sequences. The main goal of this processing is the cancellation of motion artifacts, which is a visual structured noise that appears in cu...
Gespeichert in:
Veröffentlicht in: | Multidimensional systems and signal processing 1993-10, Vol.4 (4), p.307-329 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 329 |
---|---|
container_issue | 4 |
container_start_page | 307 |
container_title | Multidimensional systems and signal processing |
container_volume | 4 |
creator | Digalakis, Vassilios V Ingle, Vinay K Manolakis, Dimitris G |
description | In this article, we apply three-dimensional (3-D) linear least-squares (LS) prediction technique to the processing of digital subtraction angiography (DSA) image sequences. The main goal of this processing is the cancellation of motion artifacts, which is a visual structured noise that appears in current DSA images. We address two important issues with this new technique: first the misregistration between the mask and the contrast image and, second, the temporal filtering of DSA image sequence. Instead of treating these two issues separately, as conventional DSA methods do, we combine them into a 3-D LS prediction problem. Based on this approach, we develop a new efficient algorithm for the solution of normal equations. The algorithm is based on a new property of T super(n) (Toeplitz to the n) matrices that we prove. In order to match the image sequence physical characteristics, we further optimize practical parameters of this algorithm. Actual patient data is used for the evaluation of this new technique. Results show a significant improvement over the existing methods. |
doi_str_mv | 10.1007/BF00989649 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26283737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16688807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c206t-bbbc4877ec874a4d67c2b73baca6f03d2c3ff743b826fad87e1ee99e45b2acc93</originalsourceid><addsrcrecordid>eNqFkDtPw0AQhE8IJEKg4Re4okAy3Cv3KCEigBRBE2pr726dHHJsc-cU-fc4BIkSbTHa0TdTDCHXjN4xSvX944JSa6yS9oRM2EyLkhouT8mEWi5KNT7n5CLnT0pHnKkJeVttEmIZ4hbbHLsWmqKJLUIq-oQh-mH0CmhDEYdcQN830cOPN3RFiOs4jAFo17FbJ-g3-0tyVkOT8epXp-Rj8bSav5TL9-fX-cOy9JyqoXTOeWm0Rm-0BBmU9txp4cCDqqkI3Iu61lI4w1UNwWhkiNainDkO3lsxJTfH3j51XzvMQ7WN2WPTQIvdLldccSP0eP-BTCljDD2At0fQpy7nhHXVp7iFtK8YrQ7bVn_bim_fZW1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16688807</pqid></control><display><type>article</type><title>Three-dimensional linear prediction and its application to digital angiography</title><source>Springer Nature - Complete Springer Journals</source><creator>Digalakis, Vassilios V ; Ingle, Vinay K ; Manolakis, Dimitris G</creator><creatorcontrib>Digalakis, Vassilios V ; Ingle, Vinay K ; Manolakis, Dimitris G</creatorcontrib><description>In this article, we apply three-dimensional (3-D) linear least-squares (LS) prediction technique to the processing of digital subtraction angiography (DSA) image sequences. The main goal of this processing is the cancellation of motion artifacts, which is a visual structured noise that appears in current DSA images. We address two important issues with this new technique: first the misregistration between the mask and the contrast image and, second, the temporal filtering of DSA image sequence. Instead of treating these two issues separately, as conventional DSA methods do, we combine them into a 3-D LS prediction problem. Based on this approach, we develop a new efficient algorithm for the solution of normal equations. The algorithm is based on a new property of T super(n) (Toeplitz to the n) matrices that we prove. In order to match the image sequence physical characteristics, we further optimize practical parameters of this algorithm. Actual patient data is used for the evaluation of this new technique. Results show a significant improvement over the existing methods.</description><identifier>ISSN: 0923-6082</identifier><identifier>EISSN: 1573-0824</identifier><identifier>DOI: 10.1007/BF00989649</identifier><language>eng</language><ispartof>Multidimensional systems and signal processing, 1993-10, Vol.4 (4), p.307-329</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c206t-bbbc4877ec874a4d67c2b73baca6f03d2c3ff743b826fad87e1ee99e45b2acc93</citedby><cites>FETCH-LOGICAL-c206t-bbbc4877ec874a4d67c2b73baca6f03d2c3ff743b826fad87e1ee99e45b2acc93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Digalakis, Vassilios V</creatorcontrib><creatorcontrib>Ingle, Vinay K</creatorcontrib><creatorcontrib>Manolakis, Dimitris G</creatorcontrib><title>Three-dimensional linear prediction and its application to digital angiography</title><title>Multidimensional systems and signal processing</title><description>In this article, we apply three-dimensional (3-D) linear least-squares (LS) prediction technique to the processing of digital subtraction angiography (DSA) image sequences. The main goal of this processing is the cancellation of motion artifacts, which is a visual structured noise that appears in current DSA images. We address two important issues with this new technique: first the misregistration between the mask and the contrast image and, second, the temporal filtering of DSA image sequence. Instead of treating these two issues separately, as conventional DSA methods do, we combine them into a 3-D LS prediction problem. Based on this approach, we develop a new efficient algorithm for the solution of normal equations. The algorithm is based on a new property of T super(n) (Toeplitz to the n) matrices that we prove. In order to match the image sequence physical characteristics, we further optimize practical parameters of this algorithm. Actual patient data is used for the evaluation of this new technique. Results show a significant improvement over the existing methods.</description><issn>0923-6082</issn><issn>1573-0824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPw0AQhE8IJEKg4Re4okAy3Cv3KCEigBRBE2pr726dHHJsc-cU-fc4BIkSbTHa0TdTDCHXjN4xSvX944JSa6yS9oRM2EyLkhouT8mEWi5KNT7n5CLnT0pHnKkJeVttEmIZ4hbbHLsWmqKJLUIq-oQh-mH0CmhDEYdcQN830cOPN3RFiOs4jAFo17FbJ-g3-0tyVkOT8epXp-Rj8bSav5TL9-fX-cOy9JyqoXTOeWm0Rm-0BBmU9txp4cCDqqkI3Iu61lI4w1UNwWhkiNainDkO3lsxJTfH3j51XzvMQ7WN2WPTQIvdLldccSP0eP-BTCljDD2At0fQpy7nhHXVp7iFtK8YrQ7bVn_bim_fZW1g</recordid><startdate>199310</startdate><enddate>199310</enddate><creator>Digalakis, Vassilios V</creator><creator>Ingle, Vinay K</creator><creator>Manolakis, Dimitris G</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>7SP</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>199310</creationdate><title>Three-dimensional linear prediction and its application to digital angiography</title><author>Digalakis, Vassilios V ; Ingle, Vinay K ; Manolakis, Dimitris G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c206t-bbbc4877ec874a4d67c2b73baca6f03d2c3ff743b826fad87e1ee99e45b2acc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Digalakis, Vassilios V</creatorcontrib><creatorcontrib>Ingle, Vinay K</creatorcontrib><creatorcontrib>Manolakis, Dimitris G</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Multidimensional systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Digalakis, Vassilios V</au><au>Ingle, Vinay K</au><au>Manolakis, Dimitris G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional linear prediction and its application to digital angiography</atitle><jtitle>Multidimensional systems and signal processing</jtitle><date>1993-10</date><risdate>1993</risdate><volume>4</volume><issue>4</issue><spage>307</spage><epage>329</epage><pages>307-329</pages><issn>0923-6082</issn><eissn>1573-0824</eissn><abstract>In this article, we apply three-dimensional (3-D) linear least-squares (LS) prediction technique to the processing of digital subtraction angiography (DSA) image sequences. The main goal of this processing is the cancellation of motion artifacts, which is a visual structured noise that appears in current DSA images. We address two important issues with this new technique: first the misregistration between the mask and the contrast image and, second, the temporal filtering of DSA image sequence. Instead of treating these two issues separately, as conventional DSA methods do, we combine them into a 3-D LS prediction problem. Based on this approach, we develop a new efficient algorithm for the solution of normal equations. The algorithm is based on a new property of T super(n) (Toeplitz to the n) matrices that we prove. In order to match the image sequence physical characteristics, we further optimize practical parameters of this algorithm. Actual patient data is used for the evaluation of this new technique. Results show a significant improvement over the existing methods.</abstract><doi>10.1007/BF00989649</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0923-6082 |
ispartof | Multidimensional systems and signal processing, 1993-10, Vol.4 (4), p.307-329 |
issn | 0923-6082 1573-0824 |
language | eng |
recordid | cdi_proquest_miscellaneous_26283737 |
source | Springer Nature - Complete Springer Journals |
title | Three-dimensional linear prediction and its application to digital angiography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A53%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20linear%20prediction%20and%20its%20application%20to%20digital%20angiography&rft.jtitle=Multidimensional%20systems%20and%20signal%20processing&rft.au=Digalakis,%20Vassilios%20V&rft.date=1993-10&rft.volume=4&rft.issue=4&rft.spage=307&rft.epage=329&rft.pages=307-329&rft.issn=0923-6082&rft.eissn=1573-0824&rft_id=info:doi/10.1007/BF00989649&rft_dat=%3Cproquest_cross%3E16688807%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16688807&rft_id=info:pmid/&rfr_iscdi=true |