Three-dimensional linear prediction and its application to digital angiography

In this article, we apply three-dimensional (3-D) linear least-squares (LS) prediction technique to the processing of digital subtraction angiography (DSA) image sequences. The main goal of this processing is the cancellation of motion artifacts, which is a visual structured noise that appears in cu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multidimensional systems and signal processing 1993-10, Vol.4 (4), p.307-329
Hauptverfasser: Digalakis, Vassilios V, Ingle, Vinay K, Manolakis, Dimitris G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 329
container_issue 4
container_start_page 307
container_title Multidimensional systems and signal processing
container_volume 4
creator Digalakis, Vassilios V
Ingle, Vinay K
Manolakis, Dimitris G
description In this article, we apply three-dimensional (3-D) linear least-squares (LS) prediction technique to the processing of digital subtraction angiography (DSA) image sequences. The main goal of this processing is the cancellation of motion artifacts, which is a visual structured noise that appears in current DSA images. We address two important issues with this new technique: first the misregistration between the mask and the contrast image and, second, the temporal filtering of DSA image sequence. Instead of treating these two issues separately, as conventional DSA methods do, we combine them into a 3-D LS prediction problem. Based on this approach, we develop a new efficient algorithm for the solution of normal equations. The algorithm is based on a new property of T super(n) (Toeplitz to the n) matrices that we prove. In order to match the image sequence physical characteristics, we further optimize practical parameters of this algorithm. Actual patient data is used for the evaluation of this new technique. Results show a significant improvement over the existing methods.
doi_str_mv 10.1007/BF00989649
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26283737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16688807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c206t-bbbc4877ec874a4d67c2b73baca6f03d2c3ff743b826fad87e1ee99e45b2acc93</originalsourceid><addsrcrecordid>eNqFkDtPw0AQhE8IJEKg4Re4okAy3Cv3KCEigBRBE2pr726dHHJsc-cU-fc4BIkSbTHa0TdTDCHXjN4xSvX944JSa6yS9oRM2EyLkhouT8mEWi5KNT7n5CLnT0pHnKkJeVttEmIZ4hbbHLsWmqKJLUIq-oQh-mH0CmhDEYdcQN830cOPN3RFiOs4jAFo17FbJ-g3-0tyVkOT8epXp-Rj8bSav5TL9-fX-cOy9JyqoXTOeWm0Rm-0BBmU9txp4cCDqqkI3Iu61lI4w1UNwWhkiNainDkO3lsxJTfH3j51XzvMQ7WN2WPTQIvdLldccSP0eP-BTCljDD2At0fQpy7nhHXVp7iFtK8YrQ7bVn_bim_fZW1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16688807</pqid></control><display><type>article</type><title>Three-dimensional linear prediction and its application to digital angiography</title><source>Springer Nature - Complete Springer Journals</source><creator>Digalakis, Vassilios V ; Ingle, Vinay K ; Manolakis, Dimitris G</creator><creatorcontrib>Digalakis, Vassilios V ; Ingle, Vinay K ; Manolakis, Dimitris G</creatorcontrib><description>In this article, we apply three-dimensional (3-D) linear least-squares (LS) prediction technique to the processing of digital subtraction angiography (DSA) image sequences. The main goal of this processing is the cancellation of motion artifacts, which is a visual structured noise that appears in current DSA images. We address two important issues with this new technique: first the misregistration between the mask and the contrast image and, second, the temporal filtering of DSA image sequence. Instead of treating these two issues separately, as conventional DSA methods do, we combine them into a 3-D LS prediction problem. Based on this approach, we develop a new efficient algorithm for the solution of normal equations. The algorithm is based on a new property of T super(n) (Toeplitz to the n) matrices that we prove. In order to match the image sequence physical characteristics, we further optimize practical parameters of this algorithm. Actual patient data is used for the evaluation of this new technique. Results show a significant improvement over the existing methods.</description><identifier>ISSN: 0923-6082</identifier><identifier>EISSN: 1573-0824</identifier><identifier>DOI: 10.1007/BF00989649</identifier><language>eng</language><ispartof>Multidimensional systems and signal processing, 1993-10, Vol.4 (4), p.307-329</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c206t-bbbc4877ec874a4d67c2b73baca6f03d2c3ff743b826fad87e1ee99e45b2acc93</citedby><cites>FETCH-LOGICAL-c206t-bbbc4877ec874a4d67c2b73baca6f03d2c3ff743b826fad87e1ee99e45b2acc93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Digalakis, Vassilios V</creatorcontrib><creatorcontrib>Ingle, Vinay K</creatorcontrib><creatorcontrib>Manolakis, Dimitris G</creatorcontrib><title>Three-dimensional linear prediction and its application to digital angiography</title><title>Multidimensional systems and signal processing</title><description>In this article, we apply three-dimensional (3-D) linear least-squares (LS) prediction technique to the processing of digital subtraction angiography (DSA) image sequences. The main goal of this processing is the cancellation of motion artifacts, which is a visual structured noise that appears in current DSA images. We address two important issues with this new technique: first the misregistration between the mask and the contrast image and, second, the temporal filtering of DSA image sequence. Instead of treating these two issues separately, as conventional DSA methods do, we combine them into a 3-D LS prediction problem. Based on this approach, we develop a new efficient algorithm for the solution of normal equations. The algorithm is based on a new property of T super(n) (Toeplitz to the n) matrices that we prove. In order to match the image sequence physical characteristics, we further optimize practical parameters of this algorithm. Actual patient data is used for the evaluation of this new technique. Results show a significant improvement over the existing methods.</description><issn>0923-6082</issn><issn>1573-0824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPw0AQhE8IJEKg4Re4okAy3Cv3KCEigBRBE2pr726dHHJsc-cU-fc4BIkSbTHa0TdTDCHXjN4xSvX944JSa6yS9oRM2EyLkhouT8mEWi5KNT7n5CLnT0pHnKkJeVttEmIZ4hbbHLsWmqKJLUIq-oQh-mH0CmhDEYdcQN830cOPN3RFiOs4jAFo17FbJ-g3-0tyVkOT8epXp-Rj8bSav5TL9-fX-cOy9JyqoXTOeWm0Rm-0BBmU9txp4cCDqqkI3Iu61lI4w1UNwWhkiNainDkO3lsxJTfH3j51XzvMQ7WN2WPTQIvdLldccSP0eP-BTCljDD2At0fQpy7nhHXVp7iFtK8YrQ7bVn_bim_fZW1g</recordid><startdate>199310</startdate><enddate>199310</enddate><creator>Digalakis, Vassilios V</creator><creator>Ingle, Vinay K</creator><creator>Manolakis, Dimitris G</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>7SP</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>199310</creationdate><title>Three-dimensional linear prediction and its application to digital angiography</title><author>Digalakis, Vassilios V ; Ingle, Vinay K ; Manolakis, Dimitris G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c206t-bbbc4877ec874a4d67c2b73baca6f03d2c3ff743b826fad87e1ee99e45b2acc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Digalakis, Vassilios V</creatorcontrib><creatorcontrib>Ingle, Vinay K</creatorcontrib><creatorcontrib>Manolakis, Dimitris G</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Multidimensional systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Digalakis, Vassilios V</au><au>Ingle, Vinay K</au><au>Manolakis, Dimitris G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional linear prediction and its application to digital angiography</atitle><jtitle>Multidimensional systems and signal processing</jtitle><date>1993-10</date><risdate>1993</risdate><volume>4</volume><issue>4</issue><spage>307</spage><epage>329</epage><pages>307-329</pages><issn>0923-6082</issn><eissn>1573-0824</eissn><abstract>In this article, we apply three-dimensional (3-D) linear least-squares (LS) prediction technique to the processing of digital subtraction angiography (DSA) image sequences. The main goal of this processing is the cancellation of motion artifacts, which is a visual structured noise that appears in current DSA images. We address two important issues with this new technique: first the misregistration between the mask and the contrast image and, second, the temporal filtering of DSA image sequence. Instead of treating these two issues separately, as conventional DSA methods do, we combine them into a 3-D LS prediction problem. Based on this approach, we develop a new efficient algorithm for the solution of normal equations. The algorithm is based on a new property of T super(n) (Toeplitz to the n) matrices that we prove. In order to match the image sequence physical characteristics, we further optimize practical parameters of this algorithm. Actual patient data is used for the evaluation of this new technique. Results show a significant improvement over the existing methods.</abstract><doi>10.1007/BF00989649</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0923-6082
ispartof Multidimensional systems and signal processing, 1993-10, Vol.4 (4), p.307-329
issn 0923-6082
1573-0824
language eng
recordid cdi_proquest_miscellaneous_26283737
source Springer Nature - Complete Springer Journals
title Three-dimensional linear prediction and its application to digital angiography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A53%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20linear%20prediction%20and%20its%20application%20to%20digital%20angiography&rft.jtitle=Multidimensional%20systems%20and%20signal%20processing&rft.au=Digalakis,%20Vassilios%20V&rft.date=1993-10&rft.volume=4&rft.issue=4&rft.spage=307&rft.epage=329&rft.pages=307-329&rft.issn=0923-6082&rft.eissn=1573-0824&rft_id=info:doi/10.1007/BF00989649&rft_dat=%3Cproquest_cross%3E16688807%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16688807&rft_id=info:pmid/&rfr_iscdi=true