Probing the electronic structure and Au–C bonding in AuC2nH (n = 4–7) using photoelectron imaging spectroscopy and quantum chemical calculations

We report a combined experimental and theoretical study on the structures and chemical bonding of AuC2nH (n = 4–7) using photoelectron imaging and quantum chemical calculations. All the ground states of anions and neutral AuC2nH have a linear geometry. The electron affinities (EAs) are measured to b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2022-02, Vol.24 (8), p.5039-5047
Hauptverfasser: Han, Changcai, Xiao-Gen Xiong, Hong, Jing, Shuai-Ting, Yan, Zejie Fei, Liu, Hongtao, Dong, Changwu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5047
container_issue 8
container_start_page 5039
container_title Physical chemistry chemical physics : PCCP
container_volume 24
creator Han, Changcai
Xiao-Gen Xiong
Hong, Jing
Shuai-Ting, Yan
Zejie Fei
Liu, Hongtao
Dong, Changwu
description We report a combined experimental and theoretical study on the structures and chemical bonding of AuC2nH (n = 4–7) using photoelectron imaging and quantum chemical calculations. All the ground states of anions and neutral AuC2nH have a linear geometry. The electron affinities (EAs) are measured to be 2.063(5), 2.157(5), 2.220(5), and 2.267(5) eV for AuC2nH, n = 4–7, respectively. The photoelectron imaging data of AuC8H− and AuC10H− reveal major vibrational progressions in the Au–C stretching modes. The ground state stretching frequencies of the titled neutral molecules are 226, 193, 177, and 128 cm−1, respectively. By comparing the experimental β value and theoretical molecular orbital analysis, we confirm that the CAM-B3LYP method is more suitable for describing the properties of such unsaturated long chains organogold clusters. The experimental and CAM-B3LYP methods give a big picture of the trend in EAs of AuC2nH. This shows that the EA value becomes larger with an increase in the carbon chain length, and it also shows a slow increment for larger n. The NRT analysis shows that the change of the Au–C bond order is not obvious as the number of carbon atoms increases, and the covalent character dominates the Au–C chemical bonds in these neutral species. The current study provides a wealth of electronic structure information about long-chain AuC2nH− (n = 4–7) and their corresponding neutral counterparts.
doi_str_mv 10.1039/d1cp05057e
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2628301725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2628301725</sourcerecordid><originalsourceid>FETCH-LOGICAL-p146t-f27f26f14ebe7f5544a6c8f8054e241394fe4d094c51598c8deea68ffbbe38bd3</originalsourceid><addsrcrecordid>eNpdkL9OwzAQxiMEEqWw8ASWWMoQ8N_EGRiqCihSJRhgrhzn3KZK7DS2BzbeAZ6QJyEtfwaG052-76dPd5ck5wRfEcyK64roDgsscjhIRoRnLC2w5Id_c54dJyfebzDGRBA2Sj6eelfWdoXCGhA0oEPvbK2RD33UIfaAlK3QNH6-vc9Q6Wy1Y2s7KDNq52hi0Q3ig5lfouh3Xrd2wf0GobpVq53qu73gtete94nbqGyILdJraGutGjSUjo0KtbP-NDkyqvFw9tPHycvd7fNsni4e7x9m00XaDeeE1NDc0MwQDiXkRgjOVaalkVhwoJywghvgFS64FkQUUssKQGXSmLIEJsuKjZPJd27Xu20EH5Zt7TU0jbLgol_SjEqGSU7FgF78Qzcu9nbYbqAYKYZnUsK-AHcQeRU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2631951321</pqid></control><display><type>article</type><title>Probing the electronic structure and Au–C bonding in AuC2nH (n = 4–7) using photoelectron imaging spectroscopy and quantum chemical calculations</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Han, Changcai ; Xiao-Gen Xiong ; Hong, Jing ; Shuai-Ting, Yan ; Zejie Fei ; Liu, Hongtao ; Dong, Changwu</creator><creatorcontrib>Han, Changcai ; Xiao-Gen Xiong ; Hong, Jing ; Shuai-Ting, Yan ; Zejie Fei ; Liu, Hongtao ; Dong, Changwu</creatorcontrib><description>We report a combined experimental and theoretical study on the structures and chemical bonding of AuC2nH (n = 4–7) using photoelectron imaging and quantum chemical calculations. All the ground states of anions and neutral AuC2nH have a linear geometry. The electron affinities (EAs) are measured to be 2.063(5), 2.157(5), 2.220(5), and 2.267(5) eV for AuC2nH, n = 4–7, respectively. The photoelectron imaging data of AuC8H− and AuC10H− reveal major vibrational progressions in the Au–C stretching modes. The ground state stretching frequencies of the titled neutral molecules are 226, 193, 177, and 128 cm−1, respectively. By comparing the experimental β value and theoretical molecular orbital analysis, we confirm that the CAM-B3LYP method is more suitable for describing the properties of such unsaturated long chains organogold clusters. The experimental and CAM-B3LYP methods give a big picture of the trend in EAs of AuC2nH. This shows that the EA value becomes larger with an increase in the carbon chain length, and it also shows a slow increment for larger n. The NRT analysis shows that the change of the Au–C bond order is not obvious as the number of carbon atoms increases, and the covalent character dominates the Au–C chemical bonds in these neutral species. The current study provides a wealth of electronic structure information about long-chain AuC2nH− (n = 4–7) and their corresponding neutral counterparts.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d1cp05057e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Atomic properties ; Carbon ; Chemical bonds ; Electronic structure ; Ground state ; Imaging ; Mathematical analysis ; Molecular chains ; Molecular orbitals ; Photoelectrons ; Progressions ; Quantum chemistry ; Stretching</subject><ispartof>Physical chemistry chemical physics : PCCP, 2022-02, Vol.24 (8), p.5039-5047</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Han, Changcai</creatorcontrib><creatorcontrib>Xiao-Gen Xiong</creatorcontrib><creatorcontrib>Hong, Jing</creatorcontrib><creatorcontrib>Shuai-Ting, Yan</creatorcontrib><creatorcontrib>Zejie Fei</creatorcontrib><creatorcontrib>Liu, Hongtao</creatorcontrib><creatorcontrib>Dong, Changwu</creatorcontrib><title>Probing the electronic structure and Au–C bonding in AuC2nH (n = 4–7) using photoelectron imaging spectroscopy and quantum chemical calculations</title><title>Physical chemistry chemical physics : PCCP</title><description>We report a combined experimental and theoretical study on the structures and chemical bonding of AuC2nH (n = 4–7) using photoelectron imaging and quantum chemical calculations. All the ground states of anions and neutral AuC2nH have a linear geometry. The electron affinities (EAs) are measured to be 2.063(5), 2.157(5), 2.220(5), and 2.267(5) eV for AuC2nH, n = 4–7, respectively. The photoelectron imaging data of AuC8H− and AuC10H− reveal major vibrational progressions in the Au–C stretching modes. The ground state stretching frequencies of the titled neutral molecules are 226, 193, 177, and 128 cm−1, respectively. By comparing the experimental β value and theoretical molecular orbital analysis, we confirm that the CAM-B3LYP method is more suitable for describing the properties of such unsaturated long chains organogold clusters. The experimental and CAM-B3LYP methods give a big picture of the trend in EAs of AuC2nH. This shows that the EA value becomes larger with an increase in the carbon chain length, and it also shows a slow increment for larger n. The NRT analysis shows that the change of the Au–C bond order is not obvious as the number of carbon atoms increases, and the covalent character dominates the Au–C chemical bonds in these neutral species. The current study provides a wealth of electronic structure information about long-chain AuC2nH− (n = 4–7) and their corresponding neutral counterparts.</description><subject>Atomic properties</subject><subject>Carbon</subject><subject>Chemical bonds</subject><subject>Electronic structure</subject><subject>Ground state</subject><subject>Imaging</subject><subject>Mathematical analysis</subject><subject>Molecular chains</subject><subject>Molecular orbitals</subject><subject>Photoelectrons</subject><subject>Progressions</subject><subject>Quantum chemistry</subject><subject>Stretching</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkL9OwzAQxiMEEqWw8ASWWMoQ8N_EGRiqCihSJRhgrhzn3KZK7DS2BzbeAZ6QJyEtfwaG052-76dPd5ck5wRfEcyK64roDgsscjhIRoRnLC2w5Id_c54dJyfebzDGRBA2Sj6eelfWdoXCGhA0oEPvbK2RD33UIfaAlK3QNH6-vc9Q6Wy1Y2s7KDNq52hi0Q3ig5lfouh3Xrd2wf0GobpVq53qu73gtete94nbqGyILdJraGutGjSUjo0KtbP-NDkyqvFw9tPHycvd7fNsni4e7x9m00XaDeeE1NDc0MwQDiXkRgjOVaalkVhwoJywghvgFS64FkQUUssKQGXSmLIEJsuKjZPJd27Xu20EH5Zt7TU0jbLgol_SjEqGSU7FgF78Qzcu9nbYbqAYKYZnUsK-AHcQeRU</recordid><startdate>20220223</startdate><enddate>20220223</enddate><creator>Han, Changcai</creator><creator>Xiao-Gen Xiong</creator><creator>Hong, Jing</creator><creator>Shuai-Ting, Yan</creator><creator>Zejie Fei</creator><creator>Liu, Hongtao</creator><creator>Dong, Changwu</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20220223</creationdate><title>Probing the electronic structure and Au–C bonding in AuC2nH (n = 4–7) using photoelectron imaging spectroscopy and quantum chemical calculations</title><author>Han, Changcai ; Xiao-Gen Xiong ; Hong, Jing ; Shuai-Ting, Yan ; Zejie Fei ; Liu, Hongtao ; Dong, Changwu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p146t-f27f26f14ebe7f5544a6c8f8054e241394fe4d094c51598c8deea68ffbbe38bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic properties</topic><topic>Carbon</topic><topic>Chemical bonds</topic><topic>Electronic structure</topic><topic>Ground state</topic><topic>Imaging</topic><topic>Mathematical analysis</topic><topic>Molecular chains</topic><topic>Molecular orbitals</topic><topic>Photoelectrons</topic><topic>Progressions</topic><topic>Quantum chemistry</topic><topic>Stretching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Changcai</creatorcontrib><creatorcontrib>Xiao-Gen Xiong</creatorcontrib><creatorcontrib>Hong, Jing</creatorcontrib><creatorcontrib>Shuai-Ting, Yan</creatorcontrib><creatorcontrib>Zejie Fei</creatorcontrib><creatorcontrib>Liu, Hongtao</creatorcontrib><creatorcontrib>Dong, Changwu</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Changcai</au><au>Xiao-Gen Xiong</au><au>Hong, Jing</au><au>Shuai-Ting, Yan</au><au>Zejie Fei</au><au>Liu, Hongtao</au><au>Dong, Changwu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing the electronic structure and Au–C bonding in AuC2nH (n = 4–7) using photoelectron imaging spectroscopy and quantum chemical calculations</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2022-02-23</date><risdate>2022</risdate><volume>24</volume><issue>8</issue><spage>5039</spage><epage>5047</epage><pages>5039-5047</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>We report a combined experimental and theoretical study on the structures and chemical bonding of AuC2nH (n = 4–7) using photoelectron imaging and quantum chemical calculations. All the ground states of anions and neutral AuC2nH have a linear geometry. The electron affinities (EAs) are measured to be 2.063(5), 2.157(5), 2.220(5), and 2.267(5) eV for AuC2nH, n = 4–7, respectively. The photoelectron imaging data of AuC8H− and AuC10H− reveal major vibrational progressions in the Au–C stretching modes. The ground state stretching frequencies of the titled neutral molecules are 226, 193, 177, and 128 cm−1, respectively. By comparing the experimental β value and theoretical molecular orbital analysis, we confirm that the CAM-B3LYP method is more suitable for describing the properties of such unsaturated long chains organogold clusters. The experimental and CAM-B3LYP methods give a big picture of the trend in EAs of AuC2nH. This shows that the EA value becomes larger with an increase in the carbon chain length, and it also shows a slow increment for larger n. The NRT analysis shows that the change of the Au–C bond order is not obvious as the number of carbon atoms increases, and the covalent character dominates the Au–C chemical bonds in these neutral species. The current study provides a wealth of electronic structure information about long-chain AuC2nH− (n = 4–7) and their corresponding neutral counterparts.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1cp05057e</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2022-02, Vol.24 (8), p.5039-5047
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_2628301725
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Atomic properties
Carbon
Chemical bonds
Electronic structure
Ground state
Imaging
Mathematical analysis
Molecular chains
Molecular orbitals
Photoelectrons
Progressions
Quantum chemistry
Stretching
title Probing the electronic structure and Au–C bonding in AuC2nH (n = 4–7) using photoelectron imaging spectroscopy and quantum chemical calculations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A18%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20the%20electronic%20structure%20and%20Au%E2%80%93C%20bonding%20in%20AuC2nH%20(n%20=%204%E2%80%937)%20using%20photoelectron%20imaging%20spectroscopy%20and%20quantum%20chemical%20calculations&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Han,%20Changcai&rft.date=2022-02-23&rft.volume=24&rft.issue=8&rft.spage=5039&rft.epage=5047&rft.pages=5039-5047&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d1cp05057e&rft_dat=%3Cproquest%3E2628301725%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2631951321&rft_id=info:pmid/&rfr_iscdi=true