Copper Azide Nanoparticle‐Encapsulating MOF‐Derived Porous Carbon: Electrochemical Preparation for High‐Performance Primary Explosive Film
It is highly desired but still remains challenging to design a primary explosive‐based nanoparticle‐encapsulated conductive skeleton for the development of powerful yet safe energetic films employed in miniaturized explosive systems. Herein, a proof‐of‐concept electrochemical preparation of metal–or...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2022-04, Vol.18 (13), p.e2107364-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 13 |
container_start_page | e2107364 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 18 |
creator | Yu, Chunpei Zhang, Wenchao Xian, Mingchun Wang, Jiaxin Chen, Junhong Chen, Yajie Shi, Wei Yang, Gexing Ye, Jiahai Ma, Kefeng Zhu, Junwu |
description | It is highly desired but still remains challenging to design a primary explosive‐based nanoparticle‐encapsulated conductive skeleton for the development of powerful yet safe energetic films employed in miniaturized explosive systems. Herein, a proof‐of‐concept electrochemical preparation of metal–organic frameworks (MOFs) derived porous carbon embedding copper‐based azide (Cu(N3)2 or CuN3, CA) nanoparticles on copper substrate is described. A Cu‐based MOF, i.e., Cu‐BTC is fabricated based on anodized Cu(OH)2 nanorods, as a template, to achieve CA/C film through pyrolysis and electrochemical azidation. Such a CA/C film, which is woven by numerous ultrafine nanofibers, favorably demonstrates excellent energy release (945–2090 J g‐1), tunable electrostatic sensitivity (0.22–1.39 mJ), and considerable initiation ability. The performance is superior to most reported primary explosives, since the CA nanoparticles contribute to high brisance and the protection of the porous carbon network. Notably, the growth mechanism of the CA/C film is further disclosed by detailed experimental investigation and density functional theory (DFT) calculation. This work will offer new insight to design and develop a CA‐based primary explosive film for applications in advanced explosive systems.
A secure and controlled strategy is developed for the in‐situ electrochemical preparation of sensitive CA nanoparticles‐encapsulated MOF‐derived porous carbon on a copper substrate. Such a strategy not only ensures high security of the reaction process and azide products, but also achieves the tailored energy release and sensitivity of the primary explosive film. |
doi_str_mv | 10.1002/smll.202107364 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2628301583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2628301583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3734-795b6d8d30f6fe327a7dc000cb29a827db2db55ca7db1379fbd2a16f8f451473</originalsourceid><addsrcrecordid>eNqFkctOGzEUhq2qiEvKtsvKUjdsEnyZsWe6Q2kCSKFEKvuRxz4DRp7x1M6Uy4pH4Bl5EowSUolNV7aPvvPJv36EvlIyoYSw49g6N2GEUSK5yD6hfSooH4uClZ-3d0r20EGMt4RwyjK5i_Z4TjMuqdhHz1Pf9xDwyaM1gH-pzvcqrKx28PL0POu06uPg1Mp21_jicp5mPyHYv2Dw0gc_RDxVofbdDzxzoFfB6xtorVYOLwMkUVr0HW58wGf2-iZtLyGkV6s6DQmxrQoPeHbfOx-TFM-ta7-gnUa5CIebc4Su5rOr6dl4cXl6Pj1ZjDWXPBvLMq-FKQwnjWiAM6mk0YQQXbNSFUyampk6z3Ua15TLsqkNU1Q0RZOl7JKP0NFa2wf_Z4C4qlobNTinOki5KiZYwQnNC57Q7x_QWz-ELn0uUVkuszxnIlGTNaWDjzFAU_XrfBUl1VtV1VtV1baqtPBtox3qFswWf-8mAeUauLMOHv6jq35fLBb_5K-uyqVl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645745526</pqid></control><display><type>article</type><title>Copper Azide Nanoparticle‐Encapsulating MOF‐Derived Porous Carbon: Electrochemical Preparation for High‐Performance Primary Explosive Film</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yu, Chunpei ; Zhang, Wenchao ; Xian, Mingchun ; Wang, Jiaxin ; Chen, Junhong ; Chen, Yajie ; Shi, Wei ; Yang, Gexing ; Ye, Jiahai ; Ma, Kefeng ; Zhu, Junwu</creator><creatorcontrib>Yu, Chunpei ; Zhang, Wenchao ; Xian, Mingchun ; Wang, Jiaxin ; Chen, Junhong ; Chen, Yajie ; Shi, Wei ; Yang, Gexing ; Ye, Jiahai ; Ma, Kefeng ; Zhu, Junwu</creatorcontrib><description>It is highly desired but still remains challenging to design a primary explosive‐based nanoparticle‐encapsulated conductive skeleton for the development of powerful yet safe energetic films employed in miniaturized explosive systems. Herein, a proof‐of‐concept electrochemical preparation of metal–organic frameworks (MOFs) derived porous carbon embedding copper‐based azide (Cu(N3)2 or CuN3, CA) nanoparticles on copper substrate is described. A Cu‐based MOF, i.e., Cu‐BTC is fabricated based on anodized Cu(OH)2 nanorods, as a template, to achieve CA/C film through pyrolysis and electrochemical azidation. Such a CA/C film, which is woven by numerous ultrafine nanofibers, favorably demonstrates excellent energy release (945–2090 J g‐1), tunable electrostatic sensitivity (0.22–1.39 mJ), and considerable initiation ability. The performance is superior to most reported primary explosives, since the CA nanoparticles contribute to high brisance and the protection of the porous carbon network. Notably, the growth mechanism of the CA/C film is further disclosed by detailed experimental investigation and density functional theory (DFT) calculation. This work will offer new insight to design and develop a CA‐based primary explosive film for applications in advanced explosive systems.
A secure and controlled strategy is developed for the in‐situ electrochemical preparation of sensitive CA nanoparticles‐encapsulated MOF‐derived porous carbon on a copper substrate. Such a strategy not only ensures high security of the reaction process and azide products, but also achieves the tailored energy release and sensitivity of the primary explosive film.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202107364</identifier><identifier>PMID: 35143716</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Carbon ; Copper ; copper azide films ; Density functional theory ; DFT calculations ; Encapsulation ; energy release ; in situ electrosynthesis ; Metal-organic frameworks ; Nanofibers ; Nanoparticles ; Nanorods ; Nanotechnology ; primary explosives ; Pyrolysis ; Substrates ; Ultrafines</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2022-04, Vol.18 (13), p.e2107364-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3734-795b6d8d30f6fe327a7dc000cb29a827db2db55ca7db1379fbd2a16f8f451473</citedby><cites>FETCH-LOGICAL-c3734-795b6d8d30f6fe327a7dc000cb29a827db2db55ca7db1379fbd2a16f8f451473</cites><orcidid>0000-0002-8992-7739 ; 0000-0002-8752-2690</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202107364$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202107364$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35143716$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Chunpei</creatorcontrib><creatorcontrib>Zhang, Wenchao</creatorcontrib><creatorcontrib>Xian, Mingchun</creatorcontrib><creatorcontrib>Wang, Jiaxin</creatorcontrib><creatorcontrib>Chen, Junhong</creatorcontrib><creatorcontrib>Chen, Yajie</creatorcontrib><creatorcontrib>Shi, Wei</creatorcontrib><creatorcontrib>Yang, Gexing</creatorcontrib><creatorcontrib>Ye, Jiahai</creatorcontrib><creatorcontrib>Ma, Kefeng</creatorcontrib><creatorcontrib>Zhu, Junwu</creatorcontrib><title>Copper Azide Nanoparticle‐Encapsulating MOF‐Derived Porous Carbon: Electrochemical Preparation for High‐Performance Primary Explosive Film</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>It is highly desired but still remains challenging to design a primary explosive‐based nanoparticle‐encapsulated conductive skeleton for the development of powerful yet safe energetic films employed in miniaturized explosive systems. Herein, a proof‐of‐concept electrochemical preparation of metal–organic frameworks (MOFs) derived porous carbon embedding copper‐based azide (Cu(N3)2 or CuN3, CA) nanoparticles on copper substrate is described. A Cu‐based MOF, i.e., Cu‐BTC is fabricated based on anodized Cu(OH)2 nanorods, as a template, to achieve CA/C film through pyrolysis and electrochemical azidation. Such a CA/C film, which is woven by numerous ultrafine nanofibers, favorably demonstrates excellent energy release (945–2090 J g‐1), tunable electrostatic sensitivity (0.22–1.39 mJ), and considerable initiation ability. The performance is superior to most reported primary explosives, since the CA nanoparticles contribute to high brisance and the protection of the porous carbon network. Notably, the growth mechanism of the CA/C film is further disclosed by detailed experimental investigation and density functional theory (DFT) calculation. This work will offer new insight to design and develop a CA‐based primary explosive film for applications in advanced explosive systems.
A secure and controlled strategy is developed for the in‐situ electrochemical preparation of sensitive CA nanoparticles‐encapsulated MOF‐derived porous carbon on a copper substrate. Such a strategy not only ensures high security of the reaction process and azide products, but also achieves the tailored energy release and sensitivity of the primary explosive film.</description><subject>Carbon</subject><subject>Copper</subject><subject>copper azide films</subject><subject>Density functional theory</subject><subject>DFT calculations</subject><subject>Encapsulation</subject><subject>energy release</subject><subject>in situ electrosynthesis</subject><subject>Metal-organic frameworks</subject><subject>Nanofibers</subject><subject>Nanoparticles</subject><subject>Nanorods</subject><subject>Nanotechnology</subject><subject>primary explosives</subject><subject>Pyrolysis</subject><subject>Substrates</subject><subject>Ultrafines</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkctOGzEUhq2qiEvKtsvKUjdsEnyZsWe6Q2kCSKFEKvuRxz4DRp7x1M6Uy4pH4Bl5EowSUolNV7aPvvPJv36EvlIyoYSw49g6N2GEUSK5yD6hfSooH4uClZ-3d0r20EGMt4RwyjK5i_Z4TjMuqdhHz1Pf9xDwyaM1gH-pzvcqrKx28PL0POu06uPg1Mp21_jicp5mPyHYv2Dw0gc_RDxVofbdDzxzoFfB6xtorVYOLwMkUVr0HW58wGf2-iZtLyGkV6s6DQmxrQoPeHbfOx-TFM-ta7-gnUa5CIebc4Su5rOr6dl4cXl6Pj1ZjDWXPBvLMq-FKQwnjWiAM6mk0YQQXbNSFUyampk6z3Ua15TLsqkNU1Q0RZOl7JKP0NFa2wf_Z4C4qlobNTinOki5KiZYwQnNC57Q7x_QWz-ELn0uUVkuszxnIlGTNaWDjzFAU_XrfBUl1VtV1VtV1baqtPBtox3qFswWf-8mAeUauLMOHv6jq35fLBb_5K-uyqVl</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Yu, Chunpei</creator><creator>Zhang, Wenchao</creator><creator>Xian, Mingchun</creator><creator>Wang, Jiaxin</creator><creator>Chen, Junhong</creator><creator>Chen, Yajie</creator><creator>Shi, Wei</creator><creator>Yang, Gexing</creator><creator>Ye, Jiahai</creator><creator>Ma, Kefeng</creator><creator>Zhu, Junwu</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8992-7739</orcidid><orcidid>https://orcid.org/0000-0002-8752-2690</orcidid></search><sort><creationdate>20220401</creationdate><title>Copper Azide Nanoparticle‐Encapsulating MOF‐Derived Porous Carbon: Electrochemical Preparation for High‐Performance Primary Explosive Film</title><author>Yu, Chunpei ; Zhang, Wenchao ; Xian, Mingchun ; Wang, Jiaxin ; Chen, Junhong ; Chen, Yajie ; Shi, Wei ; Yang, Gexing ; Ye, Jiahai ; Ma, Kefeng ; Zhu, Junwu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3734-795b6d8d30f6fe327a7dc000cb29a827db2db55ca7db1379fbd2a16f8f451473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon</topic><topic>Copper</topic><topic>copper azide films</topic><topic>Density functional theory</topic><topic>DFT calculations</topic><topic>Encapsulation</topic><topic>energy release</topic><topic>in situ electrosynthesis</topic><topic>Metal-organic frameworks</topic><topic>Nanofibers</topic><topic>Nanoparticles</topic><topic>Nanorods</topic><topic>Nanotechnology</topic><topic>primary explosives</topic><topic>Pyrolysis</topic><topic>Substrates</topic><topic>Ultrafines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Chunpei</creatorcontrib><creatorcontrib>Zhang, Wenchao</creatorcontrib><creatorcontrib>Xian, Mingchun</creatorcontrib><creatorcontrib>Wang, Jiaxin</creatorcontrib><creatorcontrib>Chen, Junhong</creatorcontrib><creatorcontrib>Chen, Yajie</creatorcontrib><creatorcontrib>Shi, Wei</creatorcontrib><creatorcontrib>Yang, Gexing</creatorcontrib><creatorcontrib>Ye, Jiahai</creatorcontrib><creatorcontrib>Ma, Kefeng</creatorcontrib><creatorcontrib>Zhu, Junwu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Chunpei</au><au>Zhang, Wenchao</au><au>Xian, Mingchun</au><au>Wang, Jiaxin</au><au>Chen, Junhong</au><au>Chen, Yajie</au><au>Shi, Wei</au><au>Yang, Gexing</au><au>Ye, Jiahai</au><au>Ma, Kefeng</au><au>Zhu, Junwu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Copper Azide Nanoparticle‐Encapsulating MOF‐Derived Porous Carbon: Electrochemical Preparation for High‐Performance Primary Explosive Film</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>18</volume><issue>13</issue><spage>e2107364</spage><epage>n/a</epage><pages>e2107364-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>It is highly desired but still remains challenging to design a primary explosive‐based nanoparticle‐encapsulated conductive skeleton for the development of powerful yet safe energetic films employed in miniaturized explosive systems. Herein, a proof‐of‐concept electrochemical preparation of metal–organic frameworks (MOFs) derived porous carbon embedding copper‐based azide (Cu(N3)2 or CuN3, CA) nanoparticles on copper substrate is described. A Cu‐based MOF, i.e., Cu‐BTC is fabricated based on anodized Cu(OH)2 nanorods, as a template, to achieve CA/C film through pyrolysis and electrochemical azidation. Such a CA/C film, which is woven by numerous ultrafine nanofibers, favorably demonstrates excellent energy release (945–2090 J g‐1), tunable electrostatic sensitivity (0.22–1.39 mJ), and considerable initiation ability. The performance is superior to most reported primary explosives, since the CA nanoparticles contribute to high brisance and the protection of the porous carbon network. Notably, the growth mechanism of the CA/C film is further disclosed by detailed experimental investigation and density functional theory (DFT) calculation. This work will offer new insight to design and develop a CA‐based primary explosive film for applications in advanced explosive systems.
A secure and controlled strategy is developed for the in‐situ electrochemical preparation of sensitive CA nanoparticles‐encapsulated MOF‐derived porous carbon on a copper substrate. Such a strategy not only ensures high security of the reaction process and azide products, but also achieves the tailored energy release and sensitivity of the primary explosive film.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35143716</pmid><doi>10.1002/smll.202107364</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8992-7739</orcidid><orcidid>https://orcid.org/0000-0002-8752-2690</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2022-04, Vol.18 (13), p.e2107364-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2628301583 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Carbon Copper copper azide films Density functional theory DFT calculations Encapsulation energy release in situ electrosynthesis Metal-organic frameworks Nanofibers Nanoparticles Nanorods Nanotechnology primary explosives Pyrolysis Substrates Ultrafines |
title | Copper Azide Nanoparticle‐Encapsulating MOF‐Derived Porous Carbon: Electrochemical Preparation for High‐Performance Primary Explosive Film |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A01%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Copper%20Azide%20Nanoparticle%E2%80%90Encapsulating%20MOF%E2%80%90Derived%20Porous%20Carbon:%20Electrochemical%20Preparation%20for%20High%E2%80%90Performance%20Primary%20Explosive%20Film&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Yu,%20Chunpei&rft.date=2022-04-01&rft.volume=18&rft.issue=13&rft.spage=e2107364&rft.epage=n/a&rft.pages=e2107364-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202107364&rft_dat=%3Cproquest_cross%3E2628301583%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2645745526&rft_id=info:pmid/35143716&rfr_iscdi=true |