Copper Azide Nanoparticle‐Encapsulating MOF‐Derived Porous Carbon: Electrochemical Preparation for High‐Performance Primary Explosive Film

It is highly desired but still remains challenging to design a primary explosive‐based nanoparticle‐encapsulated conductive skeleton for the development of powerful yet safe energetic films employed in miniaturized explosive systems. Herein, a proof‐of‐concept electrochemical preparation of metal–or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2022-04, Vol.18 (13), p.e2107364-n/a
Hauptverfasser: Yu, Chunpei, Zhang, Wenchao, Xian, Mingchun, Wang, Jiaxin, Chen, Junhong, Chen, Yajie, Shi, Wei, Yang, Gexing, Ye, Jiahai, Ma, Kefeng, Zhu, Junwu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 13
container_start_page e2107364
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 18
creator Yu, Chunpei
Zhang, Wenchao
Xian, Mingchun
Wang, Jiaxin
Chen, Junhong
Chen, Yajie
Shi, Wei
Yang, Gexing
Ye, Jiahai
Ma, Kefeng
Zhu, Junwu
description It is highly desired but still remains challenging to design a primary explosive‐based nanoparticle‐encapsulated conductive skeleton for the development of powerful yet safe energetic films employed in miniaturized explosive systems. Herein, a proof‐of‐concept electrochemical preparation of metal–organic frameworks (MOFs) derived porous carbon embedding copper‐based azide (Cu(N3)2 or CuN3, CA) nanoparticles on copper substrate is described. A Cu‐based MOF, i.e., Cu‐BTC is fabricated based on anodized Cu(OH)2 nanorods, as a template, to achieve CA/C film through pyrolysis and electrochemical azidation. Such a CA/C film, which is woven by numerous ultrafine nanofibers, favorably demonstrates excellent energy release (945–2090 J g‐1), tunable electrostatic sensitivity (0.22–1.39 mJ), and considerable initiation ability. The performance is superior to most reported primary explosives, since the CA nanoparticles contribute to high brisance and the protection of the porous carbon network. Notably, the growth mechanism of the CA/C film is further disclosed by detailed experimental investigation and density functional theory (DFT) calculation. This work will offer new insight to design and develop a CA‐based primary explosive film for applications in advanced explosive systems. A secure and controlled strategy is developed for the in‐situ electrochemical preparation of sensitive CA nanoparticles‐encapsulated MOF‐derived porous carbon on a copper substrate. Such a strategy not only ensures high security of the reaction process and azide products, but also achieves the tailored energy release and sensitivity of the primary explosive film.
doi_str_mv 10.1002/smll.202107364
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2628301583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2628301583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3734-795b6d8d30f6fe327a7dc000cb29a827db2db55ca7db1379fbd2a16f8f451473</originalsourceid><addsrcrecordid>eNqFkctOGzEUhq2qiEvKtsvKUjdsEnyZsWe6Q2kCSKFEKvuRxz4DRp7x1M6Uy4pH4Bl5EowSUolNV7aPvvPJv36EvlIyoYSw49g6N2GEUSK5yD6hfSooH4uClZ-3d0r20EGMt4RwyjK5i_Z4TjMuqdhHz1Pf9xDwyaM1gH-pzvcqrKx28PL0POu06uPg1Mp21_jicp5mPyHYv2Dw0gc_RDxVofbdDzxzoFfB6xtorVYOLwMkUVr0HW58wGf2-iZtLyGkV6s6DQmxrQoPeHbfOx-TFM-ta7-gnUa5CIebc4Su5rOr6dl4cXl6Pj1ZjDWXPBvLMq-FKQwnjWiAM6mk0YQQXbNSFUyampk6z3Ua15TLsqkNU1Q0RZOl7JKP0NFa2wf_Z4C4qlobNTinOki5KiZYwQnNC57Q7x_QWz-ELn0uUVkuszxnIlGTNaWDjzFAU_XrfBUl1VtV1VtV1baqtPBtox3qFswWf-8mAeUauLMOHv6jq35fLBb_5K-uyqVl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645745526</pqid></control><display><type>article</type><title>Copper Azide Nanoparticle‐Encapsulating MOF‐Derived Porous Carbon: Electrochemical Preparation for High‐Performance Primary Explosive Film</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yu, Chunpei ; Zhang, Wenchao ; Xian, Mingchun ; Wang, Jiaxin ; Chen, Junhong ; Chen, Yajie ; Shi, Wei ; Yang, Gexing ; Ye, Jiahai ; Ma, Kefeng ; Zhu, Junwu</creator><creatorcontrib>Yu, Chunpei ; Zhang, Wenchao ; Xian, Mingchun ; Wang, Jiaxin ; Chen, Junhong ; Chen, Yajie ; Shi, Wei ; Yang, Gexing ; Ye, Jiahai ; Ma, Kefeng ; Zhu, Junwu</creatorcontrib><description>It is highly desired but still remains challenging to design a primary explosive‐based nanoparticle‐encapsulated conductive skeleton for the development of powerful yet safe energetic films employed in miniaturized explosive systems. Herein, a proof‐of‐concept electrochemical preparation of metal–organic frameworks (MOFs) derived porous carbon embedding copper‐based azide (Cu(N3)2 or CuN3, CA) nanoparticles on copper substrate is described. A Cu‐based MOF, i.e., Cu‐BTC is fabricated based on anodized Cu(OH)2 nanorods, as a template, to achieve CA/C film through pyrolysis and electrochemical azidation. Such a CA/C film, which is woven by numerous ultrafine nanofibers, favorably demonstrates excellent energy release (945–2090 J g‐1), tunable electrostatic sensitivity (0.22–1.39 mJ), and considerable initiation ability. The performance is superior to most reported primary explosives, since the CA nanoparticles contribute to high brisance and the protection of the porous carbon network. Notably, the growth mechanism of the CA/C film is further disclosed by detailed experimental investigation and density functional theory (DFT) calculation. This work will offer new insight to design and develop a CA‐based primary explosive film for applications in advanced explosive systems. A secure and controlled strategy is developed for the in‐situ electrochemical preparation of sensitive CA nanoparticles‐encapsulated MOF‐derived porous carbon on a copper substrate. Such a strategy not only ensures high security of the reaction process and azide products, but also achieves the tailored energy release and sensitivity of the primary explosive film.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202107364</identifier><identifier>PMID: 35143716</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Carbon ; Copper ; copper azide films ; Density functional theory ; DFT calculations ; Encapsulation ; energy release ; in situ electrosynthesis ; Metal-organic frameworks ; Nanofibers ; Nanoparticles ; Nanorods ; Nanotechnology ; primary explosives ; Pyrolysis ; Substrates ; Ultrafines</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2022-04, Vol.18 (13), p.e2107364-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3734-795b6d8d30f6fe327a7dc000cb29a827db2db55ca7db1379fbd2a16f8f451473</citedby><cites>FETCH-LOGICAL-c3734-795b6d8d30f6fe327a7dc000cb29a827db2db55ca7db1379fbd2a16f8f451473</cites><orcidid>0000-0002-8992-7739 ; 0000-0002-8752-2690</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202107364$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202107364$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35143716$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Chunpei</creatorcontrib><creatorcontrib>Zhang, Wenchao</creatorcontrib><creatorcontrib>Xian, Mingchun</creatorcontrib><creatorcontrib>Wang, Jiaxin</creatorcontrib><creatorcontrib>Chen, Junhong</creatorcontrib><creatorcontrib>Chen, Yajie</creatorcontrib><creatorcontrib>Shi, Wei</creatorcontrib><creatorcontrib>Yang, Gexing</creatorcontrib><creatorcontrib>Ye, Jiahai</creatorcontrib><creatorcontrib>Ma, Kefeng</creatorcontrib><creatorcontrib>Zhu, Junwu</creatorcontrib><title>Copper Azide Nanoparticle‐Encapsulating MOF‐Derived Porous Carbon: Electrochemical Preparation for High‐Performance Primary Explosive Film</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>It is highly desired but still remains challenging to design a primary explosive‐based nanoparticle‐encapsulated conductive skeleton for the development of powerful yet safe energetic films employed in miniaturized explosive systems. Herein, a proof‐of‐concept electrochemical preparation of metal–organic frameworks (MOFs) derived porous carbon embedding copper‐based azide (Cu(N3)2 or CuN3, CA) nanoparticles on copper substrate is described. A Cu‐based MOF, i.e., Cu‐BTC is fabricated based on anodized Cu(OH)2 nanorods, as a template, to achieve CA/C film through pyrolysis and electrochemical azidation. Such a CA/C film, which is woven by numerous ultrafine nanofibers, favorably demonstrates excellent energy release (945–2090 J g‐1), tunable electrostatic sensitivity (0.22–1.39 mJ), and considerable initiation ability. The performance is superior to most reported primary explosives, since the CA nanoparticles contribute to high brisance and the protection of the porous carbon network. Notably, the growth mechanism of the CA/C film is further disclosed by detailed experimental investigation and density functional theory (DFT) calculation. This work will offer new insight to design and develop a CA‐based primary explosive film for applications in advanced explosive systems. A secure and controlled strategy is developed for the in‐situ electrochemical preparation of sensitive CA nanoparticles‐encapsulated MOF‐derived porous carbon on a copper substrate. Such a strategy not only ensures high security of the reaction process and azide products, but also achieves the tailored energy release and sensitivity of the primary explosive film.</description><subject>Carbon</subject><subject>Copper</subject><subject>copper azide films</subject><subject>Density functional theory</subject><subject>DFT calculations</subject><subject>Encapsulation</subject><subject>energy release</subject><subject>in situ electrosynthesis</subject><subject>Metal-organic frameworks</subject><subject>Nanofibers</subject><subject>Nanoparticles</subject><subject>Nanorods</subject><subject>Nanotechnology</subject><subject>primary explosives</subject><subject>Pyrolysis</subject><subject>Substrates</subject><subject>Ultrafines</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkctOGzEUhq2qiEvKtsvKUjdsEnyZsWe6Q2kCSKFEKvuRxz4DRp7x1M6Uy4pH4Bl5EowSUolNV7aPvvPJv36EvlIyoYSw49g6N2GEUSK5yD6hfSooH4uClZ-3d0r20EGMt4RwyjK5i_Z4TjMuqdhHz1Pf9xDwyaM1gH-pzvcqrKx28PL0POu06uPg1Mp21_jicp5mPyHYv2Dw0gc_RDxVofbdDzxzoFfB6xtorVYOLwMkUVr0HW58wGf2-iZtLyGkV6s6DQmxrQoPeHbfOx-TFM-ta7-gnUa5CIebc4Su5rOr6dl4cXl6Pj1ZjDWXPBvLMq-FKQwnjWiAM6mk0YQQXbNSFUyampk6z3Ua15TLsqkNU1Q0RZOl7JKP0NFa2wf_Z4C4qlobNTinOki5KiZYwQnNC57Q7x_QWz-ELn0uUVkuszxnIlGTNaWDjzFAU_XrfBUl1VtV1VtV1baqtPBtox3qFswWf-8mAeUauLMOHv6jq35fLBb_5K-uyqVl</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Yu, Chunpei</creator><creator>Zhang, Wenchao</creator><creator>Xian, Mingchun</creator><creator>Wang, Jiaxin</creator><creator>Chen, Junhong</creator><creator>Chen, Yajie</creator><creator>Shi, Wei</creator><creator>Yang, Gexing</creator><creator>Ye, Jiahai</creator><creator>Ma, Kefeng</creator><creator>Zhu, Junwu</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8992-7739</orcidid><orcidid>https://orcid.org/0000-0002-8752-2690</orcidid></search><sort><creationdate>20220401</creationdate><title>Copper Azide Nanoparticle‐Encapsulating MOF‐Derived Porous Carbon: Electrochemical Preparation for High‐Performance Primary Explosive Film</title><author>Yu, Chunpei ; Zhang, Wenchao ; Xian, Mingchun ; Wang, Jiaxin ; Chen, Junhong ; Chen, Yajie ; Shi, Wei ; Yang, Gexing ; Ye, Jiahai ; Ma, Kefeng ; Zhu, Junwu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3734-795b6d8d30f6fe327a7dc000cb29a827db2db55ca7db1379fbd2a16f8f451473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon</topic><topic>Copper</topic><topic>copper azide films</topic><topic>Density functional theory</topic><topic>DFT calculations</topic><topic>Encapsulation</topic><topic>energy release</topic><topic>in situ electrosynthesis</topic><topic>Metal-organic frameworks</topic><topic>Nanofibers</topic><topic>Nanoparticles</topic><topic>Nanorods</topic><topic>Nanotechnology</topic><topic>primary explosives</topic><topic>Pyrolysis</topic><topic>Substrates</topic><topic>Ultrafines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Chunpei</creatorcontrib><creatorcontrib>Zhang, Wenchao</creatorcontrib><creatorcontrib>Xian, Mingchun</creatorcontrib><creatorcontrib>Wang, Jiaxin</creatorcontrib><creatorcontrib>Chen, Junhong</creatorcontrib><creatorcontrib>Chen, Yajie</creatorcontrib><creatorcontrib>Shi, Wei</creatorcontrib><creatorcontrib>Yang, Gexing</creatorcontrib><creatorcontrib>Ye, Jiahai</creatorcontrib><creatorcontrib>Ma, Kefeng</creatorcontrib><creatorcontrib>Zhu, Junwu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Chunpei</au><au>Zhang, Wenchao</au><au>Xian, Mingchun</au><au>Wang, Jiaxin</au><au>Chen, Junhong</au><au>Chen, Yajie</au><au>Shi, Wei</au><au>Yang, Gexing</au><au>Ye, Jiahai</au><au>Ma, Kefeng</au><au>Zhu, Junwu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Copper Azide Nanoparticle‐Encapsulating MOF‐Derived Porous Carbon: Electrochemical Preparation for High‐Performance Primary Explosive Film</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>18</volume><issue>13</issue><spage>e2107364</spage><epage>n/a</epage><pages>e2107364-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>It is highly desired but still remains challenging to design a primary explosive‐based nanoparticle‐encapsulated conductive skeleton for the development of powerful yet safe energetic films employed in miniaturized explosive systems. Herein, a proof‐of‐concept electrochemical preparation of metal–organic frameworks (MOFs) derived porous carbon embedding copper‐based azide (Cu(N3)2 or CuN3, CA) nanoparticles on copper substrate is described. A Cu‐based MOF, i.e., Cu‐BTC is fabricated based on anodized Cu(OH)2 nanorods, as a template, to achieve CA/C film through pyrolysis and electrochemical azidation. Such a CA/C film, which is woven by numerous ultrafine nanofibers, favorably demonstrates excellent energy release (945–2090 J g‐1), tunable electrostatic sensitivity (0.22–1.39 mJ), and considerable initiation ability. The performance is superior to most reported primary explosives, since the CA nanoparticles contribute to high brisance and the protection of the porous carbon network. Notably, the growth mechanism of the CA/C film is further disclosed by detailed experimental investigation and density functional theory (DFT) calculation. This work will offer new insight to design and develop a CA‐based primary explosive film for applications in advanced explosive systems. A secure and controlled strategy is developed for the in‐situ electrochemical preparation of sensitive CA nanoparticles‐encapsulated MOF‐derived porous carbon on a copper substrate. Such a strategy not only ensures high security of the reaction process and azide products, but also achieves the tailored energy release and sensitivity of the primary explosive film.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35143716</pmid><doi>10.1002/smll.202107364</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8992-7739</orcidid><orcidid>https://orcid.org/0000-0002-8752-2690</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2022-04, Vol.18 (13), p.e2107364-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2628301583
source Wiley Online Library Journals Frontfile Complete
subjects Carbon
Copper
copper azide films
Density functional theory
DFT calculations
Encapsulation
energy release
in situ electrosynthesis
Metal-organic frameworks
Nanofibers
Nanoparticles
Nanorods
Nanotechnology
primary explosives
Pyrolysis
Substrates
Ultrafines
title Copper Azide Nanoparticle‐Encapsulating MOF‐Derived Porous Carbon: Electrochemical Preparation for High‐Performance Primary Explosive Film
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A01%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Copper%20Azide%20Nanoparticle%E2%80%90Encapsulating%20MOF%E2%80%90Derived%20Porous%20Carbon:%20Electrochemical%20Preparation%20for%20High%E2%80%90Performance%20Primary%20Explosive%20Film&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Yu,%20Chunpei&rft.date=2022-04-01&rft.volume=18&rft.issue=13&rft.spage=e2107364&rft.epage=n/a&rft.pages=e2107364-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202107364&rft_dat=%3Cproquest_cross%3E2628301583%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2645745526&rft_id=info:pmid/35143716&rfr_iscdi=true