The threat of programmed DNA damage to neuronal genome integrity and plasticity

The neuronal genome is particularly sensitive to loss or attenuation of DNA repair, and many neurological diseases ensue when DNA repair is impaired. It is well-established that the neuronal genome is subjected to stochastic DNA damage, most likely because of extensive oxidative stress in the brain....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature genetics 2022-02, Vol.54 (2), p.115-120
Hauptverfasser: Caldecott, Keith W., Ward, Michael E., Nussenzweig, André
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 120
container_issue 2
container_start_page 115
container_title Nature genetics
container_volume 54
creator Caldecott, Keith W.
Ward, Michael E.
Nussenzweig, André
description The neuronal genome is particularly sensitive to loss or attenuation of DNA repair, and many neurological diseases ensue when DNA repair is impaired. It is well-established that the neuronal genome is subjected to stochastic DNA damage, most likely because of extensive oxidative stress in the brain. However, recent studies have identified unexpected high levels of ‘programmed’ DNA breakage in neurons, which we propose arise during physiological DNA metabolic processes intrinsic to neuronal development, differentiation and maintenance. The role of programmed DNA breaks in normal neuronal physiology and disease remains relatively unexplored thus far. However, bulk and single-cell sequencing analyses of neurodegenerative diseases have revealed age-related somatic mutational signatures that are enriched in regulatory regions of the genome. Here, we explore a paradigm of DNA repair in neurons, in which the genome is safeguarded from erroneous impacts of programmed genome breakage intrinsic to normal neuronal function. Normal cellular processes can cause DNA breaks which become substrates for the cell’s DNA repair machinery. Focusing on neurons, this Perspective article explores the role of this ‘programmed’ DNA damage and its repair in health, ageing and neurodegenerative disease.
doi_str_mv 10.1038/s41588-021-01001-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2628299625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2629435013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-760938793ec429c9aadaa2561932cfb4f940260b5c30eb5dd8ace63f75d40423</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EoqXwAgzIEgtLwPfGY1WuUkWX7pbjOGmqJC52MuTtMU0BiYHJts53_uPzAXCN0T1GNH0IDPM0TRDBCcII4WQ4AVPMmUjwHKen8Y4EThiiYgIuQthFhDGUnoMJ5ZhxIuUUrDdbC7utt7qDroB770qvm8bm8PF9AXPd6DLWHWxt712ra1ja1jUWVm1nS191A9RtDve1Dl1l4vMSnBW6DvbqeM7A5vlps3xNVuuXt-VilRjGcJfMBZI0nUtqDSPSSK1zrQkXWFJiiowVkiEiUMYNRTbjeZ5qYwUt5jxniBE6A3djbPzwR29Dp5oqGFvXurWuD4oIksb9BOERvf2D7lzv4yoHSjLKEaaRIiNlvAvB20LtfdVoPyiM1JdtNdpW0bY62FZDbLo5RvdZVPbT8q03AnQEQiy1pfW_s_-J_QSu7onZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629435013</pqid></control><display><type>article</type><title>The threat of programmed DNA damage to neuronal genome integrity and plasticity</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Caldecott, Keith W. ; Ward, Michael E. ; Nussenzweig, André</creator><creatorcontrib>Caldecott, Keith W. ; Ward, Michael E. ; Nussenzweig, André</creatorcontrib><description>The neuronal genome is particularly sensitive to loss or attenuation of DNA repair, and many neurological diseases ensue when DNA repair is impaired. It is well-established that the neuronal genome is subjected to stochastic DNA damage, most likely because of extensive oxidative stress in the brain. However, recent studies have identified unexpected high levels of ‘programmed’ DNA breakage in neurons, which we propose arise during physiological DNA metabolic processes intrinsic to neuronal development, differentiation and maintenance. The role of programmed DNA breaks in normal neuronal physiology and disease remains relatively unexplored thus far. However, bulk and single-cell sequencing analyses of neurodegenerative diseases have revealed age-related somatic mutational signatures that are enriched in regulatory regions of the genome. Here, we explore a paradigm of DNA repair in neurons, in which the genome is safeguarded from erroneous impacts of programmed genome breakage intrinsic to normal neuronal function. Normal cellular processes can cause DNA breaks which become substrates for the cell’s DNA repair machinery. Focusing on neurons, this Perspective article explores the role of this ‘programmed’ DNA damage and its repair in health, ageing and neurodegenerative disease.</description><identifier>ISSN: 1061-4036</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/s41588-021-01001-y</identifier><identifier>PMID: 35145299</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>45 ; 45/15 ; 45/22 ; 45/43 ; 45/47 ; 631/208 ; 631/378/368 ; Age ; Agriculture ; Animal Genetics and Genomics ; Animals ; Ataxia ; Attenuation ; Biomedical and Life Sciences ; Biomedicine ; Brain - physiology ; Brain damage ; Cancer Research ; Deoxyribonucleic acid ; Disease ; DNA ; DNA Breaks ; DNA damage ; DNA methylation ; DNA Repair ; DNA Topoisomerases - metabolism ; Epigenetics ; Epigenome ; Gene Function ; Genome ; Genome, Human ; Genomes ; Human Genetics ; Humans ; Metabolism ; Mutation ; Nervous System Diseases - genetics ; Nervous System Diseases - physiopathology ; Neurodegenerative diseases ; Neurological diseases ; Neurons ; Neurons - physiology ; Neuropathology ; Oxidative stress ; Perspective ; Physiology ; Regulatory sequences ; Regulatory Sequences, Nucleic Acid ; Repair ; RNA polymerase</subject><ispartof>Nature genetics, 2022-02, Vol.54 (2), p.115-120</ispartof><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2022</rights><rights>2022. This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply.</rights><rights>Copyright Nature Publishing Group Feb 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-760938793ec429c9aadaa2561932cfb4f940260b5c30eb5dd8ace63f75d40423</citedby><cites>FETCH-LOGICAL-c441t-760938793ec429c9aadaa2561932cfb4f940260b5c30eb5dd8ace63f75d40423</cites><orcidid>0000-0003-4255-9016 ; 0000-0002-5296-8051 ; 0000-0002-8952-7268</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41588-021-01001-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41588-021-01001-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35145299$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Caldecott, Keith W.</creatorcontrib><creatorcontrib>Ward, Michael E.</creatorcontrib><creatorcontrib>Nussenzweig, André</creatorcontrib><title>The threat of programmed DNA damage to neuronal genome integrity and plasticity</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>The neuronal genome is particularly sensitive to loss or attenuation of DNA repair, and many neurological diseases ensue when DNA repair is impaired. It is well-established that the neuronal genome is subjected to stochastic DNA damage, most likely because of extensive oxidative stress in the brain. However, recent studies have identified unexpected high levels of ‘programmed’ DNA breakage in neurons, which we propose arise during physiological DNA metabolic processes intrinsic to neuronal development, differentiation and maintenance. The role of programmed DNA breaks in normal neuronal physiology and disease remains relatively unexplored thus far. However, bulk and single-cell sequencing analyses of neurodegenerative diseases have revealed age-related somatic mutational signatures that are enriched in regulatory regions of the genome. Here, we explore a paradigm of DNA repair in neurons, in which the genome is safeguarded from erroneous impacts of programmed genome breakage intrinsic to normal neuronal function. Normal cellular processes can cause DNA breaks which become substrates for the cell’s DNA repair machinery. Focusing on neurons, this Perspective article explores the role of this ‘programmed’ DNA damage and its repair in health, ageing and neurodegenerative disease.</description><subject>45</subject><subject>45/15</subject><subject>45/22</subject><subject>45/43</subject><subject>45/47</subject><subject>631/208</subject><subject>631/378/368</subject><subject>Age</subject><subject>Agriculture</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Ataxia</subject><subject>Attenuation</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain - physiology</subject><subject>Brain damage</subject><subject>Cancer Research</subject><subject>Deoxyribonucleic acid</subject><subject>Disease</subject><subject>DNA</subject><subject>DNA Breaks</subject><subject>DNA damage</subject><subject>DNA methylation</subject><subject>DNA Repair</subject><subject>DNA Topoisomerases - metabolism</subject><subject>Epigenetics</subject><subject>Epigenome</subject><subject>Gene Function</subject><subject>Genome</subject><subject>Genome, Human</subject><subject>Genomes</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Metabolism</subject><subject>Mutation</subject><subject>Nervous System Diseases - genetics</subject><subject>Nervous System Diseases - physiopathology</subject><subject>Neurodegenerative diseases</subject><subject>Neurological diseases</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neuropathology</subject><subject>Oxidative stress</subject><subject>Perspective</subject><subject>Physiology</subject><subject>Regulatory sequences</subject><subject>Regulatory Sequences, Nucleic Acid</subject><subject>Repair</subject><subject>RNA polymerase</subject><issn>1061-4036</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kLtOwzAUhi0EoqXwAgzIEgtLwPfGY1WuUkWX7pbjOGmqJC52MuTtMU0BiYHJts53_uPzAXCN0T1GNH0IDPM0TRDBCcII4WQ4AVPMmUjwHKen8Y4EThiiYgIuQthFhDGUnoMJ5ZhxIuUUrDdbC7utt7qDroB770qvm8bm8PF9AXPd6DLWHWxt712ra1ja1jUWVm1nS191A9RtDve1Dl1l4vMSnBW6DvbqeM7A5vlps3xNVuuXt-VilRjGcJfMBZI0nUtqDSPSSK1zrQkXWFJiiowVkiEiUMYNRTbjeZ5qYwUt5jxniBE6A3djbPzwR29Dp5oqGFvXurWuD4oIksb9BOERvf2D7lzv4yoHSjLKEaaRIiNlvAvB20LtfdVoPyiM1JdtNdpW0bY62FZDbLo5RvdZVPbT8q03AnQEQiy1pfW_s_-J_QSu7onZ</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Caldecott, Keith W.</creator><creator>Ward, Michael E.</creator><creator>Nussenzweig, André</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4255-9016</orcidid><orcidid>https://orcid.org/0000-0002-5296-8051</orcidid><orcidid>https://orcid.org/0000-0002-8952-7268</orcidid></search><sort><creationdate>20220201</creationdate><title>The threat of programmed DNA damage to neuronal genome integrity and plasticity</title><author>Caldecott, Keith W. ; Ward, Michael E. ; Nussenzweig, André</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-760938793ec429c9aadaa2561932cfb4f940260b5c30eb5dd8ace63f75d40423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>45</topic><topic>45/15</topic><topic>45/22</topic><topic>45/43</topic><topic>45/47</topic><topic>631/208</topic><topic>631/378/368</topic><topic>Age</topic><topic>Agriculture</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Ataxia</topic><topic>Attenuation</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain - physiology</topic><topic>Brain damage</topic><topic>Cancer Research</topic><topic>Deoxyribonucleic acid</topic><topic>Disease</topic><topic>DNA</topic><topic>DNA Breaks</topic><topic>DNA damage</topic><topic>DNA methylation</topic><topic>DNA Repair</topic><topic>DNA Topoisomerases - metabolism</topic><topic>Epigenetics</topic><topic>Epigenome</topic><topic>Gene Function</topic><topic>Genome</topic><topic>Genome, Human</topic><topic>Genomes</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Metabolism</topic><topic>Mutation</topic><topic>Nervous System Diseases - genetics</topic><topic>Nervous System Diseases - physiopathology</topic><topic>Neurodegenerative diseases</topic><topic>Neurological diseases</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neuropathology</topic><topic>Oxidative stress</topic><topic>Perspective</topic><topic>Physiology</topic><topic>Regulatory sequences</topic><topic>Regulatory Sequences, Nucleic Acid</topic><topic>Repair</topic><topic>RNA polymerase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caldecott, Keith W.</creatorcontrib><creatorcontrib>Ward, Michael E.</creatorcontrib><creatorcontrib>Nussenzweig, André</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caldecott, Keith W.</au><au>Ward, Michael E.</au><au>Nussenzweig, André</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The threat of programmed DNA damage to neuronal genome integrity and plasticity</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>54</volume><issue>2</issue><spage>115</spage><epage>120</epage><pages>115-120</pages><issn>1061-4036</issn><eissn>1546-1718</eissn><abstract>The neuronal genome is particularly sensitive to loss or attenuation of DNA repair, and many neurological diseases ensue when DNA repair is impaired. It is well-established that the neuronal genome is subjected to stochastic DNA damage, most likely because of extensive oxidative stress in the brain. However, recent studies have identified unexpected high levels of ‘programmed’ DNA breakage in neurons, which we propose arise during physiological DNA metabolic processes intrinsic to neuronal development, differentiation and maintenance. The role of programmed DNA breaks in normal neuronal physiology and disease remains relatively unexplored thus far. However, bulk and single-cell sequencing analyses of neurodegenerative diseases have revealed age-related somatic mutational signatures that are enriched in regulatory regions of the genome. Here, we explore a paradigm of DNA repair in neurons, in which the genome is safeguarded from erroneous impacts of programmed genome breakage intrinsic to normal neuronal function. Normal cellular processes can cause DNA breaks which become substrates for the cell’s DNA repair machinery. Focusing on neurons, this Perspective article explores the role of this ‘programmed’ DNA damage and its repair in health, ageing and neurodegenerative disease.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>35145299</pmid><doi>10.1038/s41588-021-01001-y</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-4255-9016</orcidid><orcidid>https://orcid.org/0000-0002-5296-8051</orcidid><orcidid>https://orcid.org/0000-0002-8952-7268</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1061-4036
ispartof Nature genetics, 2022-02, Vol.54 (2), p.115-120
issn 1061-4036
1546-1718
language eng
recordid cdi_proquest_miscellaneous_2628299625
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 45
45/15
45/22
45/43
45/47
631/208
631/378/368
Age
Agriculture
Animal Genetics and Genomics
Animals
Ataxia
Attenuation
Biomedical and Life Sciences
Biomedicine
Brain - physiology
Brain damage
Cancer Research
Deoxyribonucleic acid
Disease
DNA
DNA Breaks
DNA damage
DNA methylation
DNA Repair
DNA Topoisomerases - metabolism
Epigenetics
Epigenome
Gene Function
Genome
Genome, Human
Genomes
Human Genetics
Humans
Metabolism
Mutation
Nervous System Diseases - genetics
Nervous System Diseases - physiopathology
Neurodegenerative diseases
Neurological diseases
Neurons
Neurons - physiology
Neuropathology
Oxidative stress
Perspective
Physiology
Regulatory sequences
Regulatory Sequences, Nucleic Acid
Repair
RNA polymerase
title The threat of programmed DNA damage to neuronal genome integrity and plasticity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T23%3A34%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20threat%20of%20programmed%20DNA%20damage%20to%20neuronal%20genome%20integrity%20and%20plasticity&rft.jtitle=Nature%20genetics&rft.au=Caldecott,%20Keith%20W.&rft.date=2022-02-01&rft.volume=54&rft.issue=2&rft.spage=115&rft.epage=120&rft.pages=115-120&rft.issn=1061-4036&rft.eissn=1546-1718&rft_id=info:doi/10.1038/s41588-021-01001-y&rft_dat=%3Cproquest_cross%3E2629435013%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2629435013&rft_id=info:pmid/35145299&rfr_iscdi=true