The threat of programmed DNA damage to neuronal genome integrity and plasticity
The neuronal genome is particularly sensitive to loss or attenuation of DNA repair, and many neurological diseases ensue when DNA repair is impaired. It is well-established that the neuronal genome is subjected to stochastic DNA damage, most likely because of extensive oxidative stress in the brain....
Gespeichert in:
Veröffentlicht in: | Nature genetics 2022-02, Vol.54 (2), p.115-120 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 120 |
---|---|
container_issue | 2 |
container_start_page | 115 |
container_title | Nature genetics |
container_volume | 54 |
creator | Caldecott, Keith W. Ward, Michael E. Nussenzweig, André |
description | The neuronal genome is particularly sensitive to loss or attenuation of DNA repair, and many neurological diseases ensue when DNA repair is impaired. It is well-established that the neuronal genome is subjected to stochastic DNA damage, most likely because of extensive oxidative stress in the brain. However, recent studies have identified unexpected high levels of ‘programmed’ DNA breakage in neurons, which we propose arise during physiological DNA metabolic processes intrinsic to neuronal development, differentiation and maintenance. The role of programmed DNA breaks in normal neuronal physiology and disease remains relatively unexplored thus far. However, bulk and single-cell sequencing analyses of neurodegenerative diseases have revealed age-related somatic mutational signatures that are enriched in regulatory regions of the genome. Here, we explore a paradigm of DNA repair in neurons, in which the genome is safeguarded from erroneous impacts of programmed genome breakage intrinsic to normal neuronal function.
Normal cellular processes can cause DNA breaks which become substrates for the cell’s DNA repair machinery. Focusing on neurons, this Perspective article explores the role of this ‘programmed’ DNA damage and its repair in health, ageing and neurodegenerative disease. |
doi_str_mv | 10.1038/s41588-021-01001-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2628299625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2629435013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-760938793ec429c9aadaa2561932cfb4f940260b5c30eb5dd8ace63f75d40423</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EoqXwAgzIEgtLwPfGY1WuUkWX7pbjOGmqJC52MuTtMU0BiYHJts53_uPzAXCN0T1GNH0IDPM0TRDBCcII4WQ4AVPMmUjwHKen8Y4EThiiYgIuQthFhDGUnoMJ5ZhxIuUUrDdbC7utt7qDroB770qvm8bm8PF9AXPd6DLWHWxt712ra1ja1jUWVm1nS191A9RtDve1Dl1l4vMSnBW6DvbqeM7A5vlps3xNVuuXt-VilRjGcJfMBZI0nUtqDSPSSK1zrQkXWFJiiowVkiEiUMYNRTbjeZ5qYwUt5jxniBE6A3djbPzwR29Dp5oqGFvXurWuD4oIksb9BOERvf2D7lzv4yoHSjLKEaaRIiNlvAvB20LtfdVoPyiM1JdtNdpW0bY62FZDbLo5RvdZVPbT8q03AnQEQiy1pfW_s_-J_QSu7onZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629435013</pqid></control><display><type>article</type><title>The threat of programmed DNA damage to neuronal genome integrity and plasticity</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Caldecott, Keith W. ; Ward, Michael E. ; Nussenzweig, André</creator><creatorcontrib>Caldecott, Keith W. ; Ward, Michael E. ; Nussenzweig, André</creatorcontrib><description>The neuronal genome is particularly sensitive to loss or attenuation of DNA repair, and many neurological diseases ensue when DNA repair is impaired. It is well-established that the neuronal genome is subjected to stochastic DNA damage, most likely because of extensive oxidative stress in the brain. However, recent studies have identified unexpected high levels of ‘programmed’ DNA breakage in neurons, which we propose arise during physiological DNA metabolic processes intrinsic to neuronal development, differentiation and maintenance. The role of programmed DNA breaks in normal neuronal physiology and disease remains relatively unexplored thus far. However, bulk and single-cell sequencing analyses of neurodegenerative diseases have revealed age-related somatic mutational signatures that are enriched in regulatory regions of the genome. Here, we explore a paradigm of DNA repair in neurons, in which the genome is safeguarded from erroneous impacts of programmed genome breakage intrinsic to normal neuronal function.
Normal cellular processes can cause DNA breaks which become substrates for the cell’s DNA repair machinery. Focusing on neurons, this Perspective article explores the role of this ‘programmed’ DNA damage and its repair in health, ageing and neurodegenerative disease.</description><identifier>ISSN: 1061-4036</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/s41588-021-01001-y</identifier><identifier>PMID: 35145299</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>45 ; 45/15 ; 45/22 ; 45/43 ; 45/47 ; 631/208 ; 631/378/368 ; Age ; Agriculture ; Animal Genetics and Genomics ; Animals ; Ataxia ; Attenuation ; Biomedical and Life Sciences ; Biomedicine ; Brain - physiology ; Brain damage ; Cancer Research ; Deoxyribonucleic acid ; Disease ; DNA ; DNA Breaks ; DNA damage ; DNA methylation ; DNA Repair ; DNA Topoisomerases - metabolism ; Epigenetics ; Epigenome ; Gene Function ; Genome ; Genome, Human ; Genomes ; Human Genetics ; Humans ; Metabolism ; Mutation ; Nervous System Diseases - genetics ; Nervous System Diseases - physiopathology ; Neurodegenerative diseases ; Neurological diseases ; Neurons ; Neurons - physiology ; Neuropathology ; Oxidative stress ; Perspective ; Physiology ; Regulatory sequences ; Regulatory Sequences, Nucleic Acid ; Repair ; RNA polymerase</subject><ispartof>Nature genetics, 2022-02, Vol.54 (2), p.115-120</ispartof><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2022</rights><rights>2022. This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply.</rights><rights>Copyright Nature Publishing Group Feb 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-760938793ec429c9aadaa2561932cfb4f940260b5c30eb5dd8ace63f75d40423</citedby><cites>FETCH-LOGICAL-c441t-760938793ec429c9aadaa2561932cfb4f940260b5c30eb5dd8ace63f75d40423</cites><orcidid>0000-0003-4255-9016 ; 0000-0002-5296-8051 ; 0000-0002-8952-7268</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41588-021-01001-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41588-021-01001-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35145299$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Caldecott, Keith W.</creatorcontrib><creatorcontrib>Ward, Michael E.</creatorcontrib><creatorcontrib>Nussenzweig, André</creatorcontrib><title>The threat of programmed DNA damage to neuronal genome integrity and plasticity</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>The neuronal genome is particularly sensitive to loss or attenuation of DNA repair, and many neurological diseases ensue when DNA repair is impaired. It is well-established that the neuronal genome is subjected to stochastic DNA damage, most likely because of extensive oxidative stress in the brain. However, recent studies have identified unexpected high levels of ‘programmed’ DNA breakage in neurons, which we propose arise during physiological DNA metabolic processes intrinsic to neuronal development, differentiation and maintenance. The role of programmed DNA breaks in normal neuronal physiology and disease remains relatively unexplored thus far. However, bulk and single-cell sequencing analyses of neurodegenerative diseases have revealed age-related somatic mutational signatures that are enriched in regulatory regions of the genome. Here, we explore a paradigm of DNA repair in neurons, in which the genome is safeguarded from erroneous impacts of programmed genome breakage intrinsic to normal neuronal function.
Normal cellular processes can cause DNA breaks which become substrates for the cell’s DNA repair machinery. Focusing on neurons, this Perspective article explores the role of this ‘programmed’ DNA damage and its repair in health, ageing and neurodegenerative disease.</description><subject>45</subject><subject>45/15</subject><subject>45/22</subject><subject>45/43</subject><subject>45/47</subject><subject>631/208</subject><subject>631/378/368</subject><subject>Age</subject><subject>Agriculture</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Ataxia</subject><subject>Attenuation</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain - physiology</subject><subject>Brain damage</subject><subject>Cancer Research</subject><subject>Deoxyribonucleic acid</subject><subject>Disease</subject><subject>DNA</subject><subject>DNA Breaks</subject><subject>DNA damage</subject><subject>DNA methylation</subject><subject>DNA Repair</subject><subject>DNA Topoisomerases - metabolism</subject><subject>Epigenetics</subject><subject>Epigenome</subject><subject>Gene Function</subject><subject>Genome</subject><subject>Genome, Human</subject><subject>Genomes</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Metabolism</subject><subject>Mutation</subject><subject>Nervous System Diseases - genetics</subject><subject>Nervous System Diseases - physiopathology</subject><subject>Neurodegenerative diseases</subject><subject>Neurological diseases</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neuropathology</subject><subject>Oxidative stress</subject><subject>Perspective</subject><subject>Physiology</subject><subject>Regulatory sequences</subject><subject>Regulatory Sequences, Nucleic Acid</subject><subject>Repair</subject><subject>RNA polymerase</subject><issn>1061-4036</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kLtOwzAUhi0EoqXwAgzIEgtLwPfGY1WuUkWX7pbjOGmqJC52MuTtMU0BiYHJts53_uPzAXCN0T1GNH0IDPM0TRDBCcII4WQ4AVPMmUjwHKen8Y4EThiiYgIuQthFhDGUnoMJ5ZhxIuUUrDdbC7utt7qDroB770qvm8bm8PF9AXPd6DLWHWxt712ra1ja1jUWVm1nS191A9RtDve1Dl1l4vMSnBW6DvbqeM7A5vlps3xNVuuXt-VilRjGcJfMBZI0nUtqDSPSSK1zrQkXWFJiiowVkiEiUMYNRTbjeZ5qYwUt5jxniBE6A3djbPzwR29Dp5oqGFvXurWuD4oIksb9BOERvf2D7lzv4yoHSjLKEaaRIiNlvAvB20LtfdVoPyiM1JdtNdpW0bY62FZDbLo5RvdZVPbT8q03AnQEQiy1pfW_s_-J_QSu7onZ</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Caldecott, Keith W.</creator><creator>Ward, Michael E.</creator><creator>Nussenzweig, André</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4255-9016</orcidid><orcidid>https://orcid.org/0000-0002-5296-8051</orcidid><orcidid>https://orcid.org/0000-0002-8952-7268</orcidid></search><sort><creationdate>20220201</creationdate><title>The threat of programmed DNA damage to neuronal genome integrity and plasticity</title><author>Caldecott, Keith W. ; Ward, Michael E. ; Nussenzweig, André</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-760938793ec429c9aadaa2561932cfb4f940260b5c30eb5dd8ace63f75d40423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>45</topic><topic>45/15</topic><topic>45/22</topic><topic>45/43</topic><topic>45/47</topic><topic>631/208</topic><topic>631/378/368</topic><topic>Age</topic><topic>Agriculture</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Ataxia</topic><topic>Attenuation</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain - physiology</topic><topic>Brain damage</topic><topic>Cancer Research</topic><topic>Deoxyribonucleic acid</topic><topic>Disease</topic><topic>DNA</topic><topic>DNA Breaks</topic><topic>DNA damage</topic><topic>DNA methylation</topic><topic>DNA Repair</topic><topic>DNA Topoisomerases - metabolism</topic><topic>Epigenetics</topic><topic>Epigenome</topic><topic>Gene Function</topic><topic>Genome</topic><topic>Genome, Human</topic><topic>Genomes</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Metabolism</topic><topic>Mutation</topic><topic>Nervous System Diseases - genetics</topic><topic>Nervous System Diseases - physiopathology</topic><topic>Neurodegenerative diseases</topic><topic>Neurological diseases</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neuropathology</topic><topic>Oxidative stress</topic><topic>Perspective</topic><topic>Physiology</topic><topic>Regulatory sequences</topic><topic>Regulatory Sequences, Nucleic Acid</topic><topic>Repair</topic><topic>RNA polymerase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caldecott, Keith W.</creatorcontrib><creatorcontrib>Ward, Michael E.</creatorcontrib><creatorcontrib>Nussenzweig, André</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caldecott, Keith W.</au><au>Ward, Michael E.</au><au>Nussenzweig, André</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The threat of programmed DNA damage to neuronal genome integrity and plasticity</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>54</volume><issue>2</issue><spage>115</spage><epage>120</epage><pages>115-120</pages><issn>1061-4036</issn><eissn>1546-1718</eissn><abstract>The neuronal genome is particularly sensitive to loss or attenuation of DNA repair, and many neurological diseases ensue when DNA repair is impaired. It is well-established that the neuronal genome is subjected to stochastic DNA damage, most likely because of extensive oxidative stress in the brain. However, recent studies have identified unexpected high levels of ‘programmed’ DNA breakage in neurons, which we propose arise during physiological DNA metabolic processes intrinsic to neuronal development, differentiation and maintenance. The role of programmed DNA breaks in normal neuronal physiology and disease remains relatively unexplored thus far. However, bulk and single-cell sequencing analyses of neurodegenerative diseases have revealed age-related somatic mutational signatures that are enriched in regulatory regions of the genome. Here, we explore a paradigm of DNA repair in neurons, in which the genome is safeguarded from erroneous impacts of programmed genome breakage intrinsic to normal neuronal function.
Normal cellular processes can cause DNA breaks which become substrates for the cell’s DNA repair machinery. Focusing on neurons, this Perspective article explores the role of this ‘programmed’ DNA damage and its repair in health, ageing and neurodegenerative disease.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>35145299</pmid><doi>10.1038/s41588-021-01001-y</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-4255-9016</orcidid><orcidid>https://orcid.org/0000-0002-5296-8051</orcidid><orcidid>https://orcid.org/0000-0002-8952-7268</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-4036 |
ispartof | Nature genetics, 2022-02, Vol.54 (2), p.115-120 |
issn | 1061-4036 1546-1718 |
language | eng |
recordid | cdi_proquest_miscellaneous_2628299625 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 45 45/15 45/22 45/43 45/47 631/208 631/378/368 Age Agriculture Animal Genetics and Genomics Animals Ataxia Attenuation Biomedical and Life Sciences Biomedicine Brain - physiology Brain damage Cancer Research Deoxyribonucleic acid Disease DNA DNA Breaks DNA damage DNA methylation DNA Repair DNA Topoisomerases - metabolism Epigenetics Epigenome Gene Function Genome Genome, Human Genomes Human Genetics Humans Metabolism Mutation Nervous System Diseases - genetics Nervous System Diseases - physiopathology Neurodegenerative diseases Neurological diseases Neurons Neurons - physiology Neuropathology Oxidative stress Perspective Physiology Regulatory sequences Regulatory Sequences, Nucleic Acid Repair RNA polymerase |
title | The threat of programmed DNA damage to neuronal genome integrity and plasticity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T23%3A34%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20threat%20of%20programmed%20DNA%20damage%20to%20neuronal%20genome%20integrity%20and%20plasticity&rft.jtitle=Nature%20genetics&rft.au=Caldecott,%20Keith%20W.&rft.date=2022-02-01&rft.volume=54&rft.issue=2&rft.spage=115&rft.epage=120&rft.pages=115-120&rft.issn=1061-4036&rft.eissn=1546-1718&rft_id=info:doi/10.1038/s41588-021-01001-y&rft_dat=%3Cproquest_cross%3E2629435013%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2629435013&rft_id=info:pmid/35145299&rfr_iscdi=true |