A new boundary spectral strip method for non-periodical geometrical entities based on analytical integrations

A method based on expanding the boundary integral equation into a trigonometric series or a high-order polynom is proposed, depending on the domain geometry. It is a non-element method which yields solutions to elastostatic and potential problems, using a small computer memory, yet obtaining more pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 1996-09, Vol.135 (3), p.327-342
Hauptverfasser: Michael, Ofer, Avrashi, Jacob, Rosenhouse, Giora
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 342
container_issue 3
container_start_page 327
container_title Computer methods in applied mechanics and engineering
container_volume 135
creator Michael, Ofer
Avrashi, Jacob
Rosenhouse, Giora
description A method based on expanding the boundary integral equation into a trigonometric series or a high-order polynom is proposed, depending on the domain geometry. It is a non-element method which yields solutions to elastostatic and potential problems, using a small computer memory, yet obtaining more precise results as compared with other common numerical methods. When the geometry of the problem contains circles and straight lines, all the integrations required for solution of the boundary integral are solved analytically. Some elastostatic problems are solved here, and compared with the boundary element method (BEM), which shows some remarkable advantages of the boundary strip method over the BEM.
doi_str_mv 10.1016/0045-7825(95)00951-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26280180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0045782595009515</els_id><sourcerecordid>26280180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-afe7c4046246ba0b12a789b4b07b16a19ec6ec9443d5dde8d6fa55d32be1ef2b3</originalsourceid><addsrcrecordid>eNp9kElLBDEQhYMoOC7_wEMOInpoTdJJLxdBxA0EL3oOWarHSE_SJhll_r2ZGfFoXargvXpFfQidUHJJCW2uCOGiajsmzntxQUgvaCV20Ix2bV8xWne7aPZn2UcHKX2QUh1lM7S4wR6-sQ5Lb1Vc4TSByVGNOOXoJryA_B4sHkLEPvhqguiCdabocwhFjJsZfHbZQcJaJbA4eKy8Gld5IzqfYR5VdsGnI7Q3qDHB8W8_RG_3d6-3j9Xzy8PT7c1zZeqG50oN0BpOeMN4oxXRlKm26zXXpNW0UbQH04DpOa-tsBY62wxKCFszDRQGputDdLbNnWL4XELKcuGSgXFUHsIySdawjtCOFCPfGk0MKUUY5BTdooCQlMg1W7kGJ9fgZC_khq0UZe30N1-l8uMQlTcu_e3WjNRcrNOvtzYov345iDIZB96AdbFglja4_-_8AE01j-k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26280180</pqid></control><display><type>article</type><title>A new boundary spectral strip method for non-periodical geometrical entities based on analytical integrations</title><source>Elsevier ScienceDirect Journals</source><creator>Michael, Ofer ; Avrashi, Jacob ; Rosenhouse, Giora</creator><creatorcontrib>Michael, Ofer ; Avrashi, Jacob ; Rosenhouse, Giora</creatorcontrib><description>A method based on expanding the boundary integral equation into a trigonometric series or a high-order polynom is proposed, depending on the domain geometry. It is a non-element method which yields solutions to elastostatic and potential problems, using a small computer memory, yet obtaining more precise results as compared with other common numerical methods. When the geometry of the problem contains circles and straight lines, all the integrations required for solution of the boundary integral are solved analytically. Some elastostatic problems are solved here, and compared with the boundary element method (BEM), which shows some remarkable advantages of the boundary strip method over the BEM.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/0045-7825(95)00951-5</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid mechanics ; Static elasticity ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics</subject><ispartof>Computer methods in applied mechanics and engineering, 1996-09, Vol.135 (3), p.327-342</ispartof><rights>1996</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-afe7c4046246ba0b12a789b4b07b16a19ec6ec9443d5dde8d6fa55d32be1ef2b3</citedby><cites>FETCH-LOGICAL-c364t-afe7c4046246ba0b12a789b4b07b16a19ec6ec9443d5dde8d6fa55d32be1ef2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0045782595009515$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3203450$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Michael, Ofer</creatorcontrib><creatorcontrib>Avrashi, Jacob</creatorcontrib><creatorcontrib>Rosenhouse, Giora</creatorcontrib><title>A new boundary spectral strip method for non-periodical geometrical entities based on analytical integrations</title><title>Computer methods in applied mechanics and engineering</title><description>A method based on expanding the boundary integral equation into a trigonometric series or a high-order polynom is proposed, depending on the domain geometry. It is a non-element method which yields solutions to elastostatic and potential problems, using a small computer memory, yet obtaining more precise results as compared with other common numerical methods. When the geometry of the problem contains circles and straight lines, all the integrations required for solution of the boundary integral are solved analytically. Some elastostatic problems are solved here, and compared with the boundary element method (BEM), which shows some remarkable advantages of the boundary strip method over the BEM.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Static elasticity</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp9kElLBDEQhYMoOC7_wEMOInpoTdJJLxdBxA0EL3oOWarHSE_SJhll_r2ZGfFoXargvXpFfQidUHJJCW2uCOGiajsmzntxQUgvaCV20Ix2bV8xWne7aPZn2UcHKX2QUh1lM7S4wR6-sQ5Lb1Vc4TSByVGNOOXoJryA_B4sHkLEPvhqguiCdabocwhFjJsZfHbZQcJaJbA4eKy8Gld5IzqfYR5VdsGnI7Q3qDHB8W8_RG_3d6-3j9Xzy8PT7c1zZeqG50oN0BpOeMN4oxXRlKm26zXXpNW0UbQH04DpOa-tsBY62wxKCFszDRQGputDdLbNnWL4XELKcuGSgXFUHsIySdawjtCOFCPfGk0MKUUY5BTdooCQlMg1W7kGJ9fgZC_khq0UZe30N1-l8uMQlTcu_e3WjNRcrNOvtzYov345iDIZB96AdbFglja4_-_8AE01j-k</recordid><startdate>19960901</startdate><enddate>19960901</enddate><creator>Michael, Ofer</creator><creator>Avrashi, Jacob</creator><creator>Rosenhouse, Giora</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19960901</creationdate><title>A new boundary spectral strip method for non-periodical geometrical entities based on analytical integrations</title><author>Michael, Ofer ; Avrashi, Jacob ; Rosenhouse, Giora</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-afe7c4046246ba0b12a789b4b07b16a19ec6ec9443d5dde8d6fa55d32be1ef2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Static elasticity</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michael, Ofer</creatorcontrib><creatorcontrib>Avrashi, Jacob</creatorcontrib><creatorcontrib>Rosenhouse, Giora</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michael, Ofer</au><au>Avrashi, Jacob</au><au>Rosenhouse, Giora</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new boundary spectral strip method for non-periodical geometrical entities based on analytical integrations</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>1996-09-01</date><risdate>1996</risdate><volume>135</volume><issue>3</issue><spage>327</spage><epage>342</epage><pages>327-342</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>A method based on expanding the boundary integral equation into a trigonometric series or a high-order polynom is proposed, depending on the domain geometry. It is a non-element method which yields solutions to elastostatic and potential problems, using a small computer memory, yet obtaining more precise results as compared with other common numerical methods. When the geometry of the problem contains circles and straight lines, all the integrations required for solution of the boundary integral are solved analytically. Some elastostatic problems are solved here, and compared with the boundary element method (BEM), which shows some remarkable advantages of the boundary strip method over the BEM.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0045-7825(95)00951-5</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 1996-09, Vol.135 (3), p.327-342
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_miscellaneous_26280180
source Elsevier ScienceDirect Journals
subjects Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Physics
Solid mechanics
Static elasticity
Static elasticity (thermoelasticity...)
Structural and continuum mechanics
title A new boundary spectral strip method for non-periodical geometrical entities based on analytical integrations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T07%3A27%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20boundary%20spectral%20strip%20method%20for%20non-periodical%20geometrical%20entities%20based%20on%20analytical%20integrations&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Michael,%20Ofer&rft.date=1996-09-01&rft.volume=135&rft.issue=3&rft.spage=327&rft.epage=342&rft.pages=327-342&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/0045-7825(95)00951-5&rft_dat=%3Cproquest_cross%3E26280180%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26280180&rft_id=info:pmid/&rft_els_id=0045782595009515&rfr_iscdi=true