Dynamic analysis and optimal control of a class of SISP respiratory diseases

In this paper, the actual background of the susceptible population being directly patients after inhaling a certain amount of PM is taken into account. The concentration response function of PM is introduced, and the SISP respiratory disease model is proposed. Qualitative theoretical analysis proves...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biological dynamics 2022-12, Vol.16 (1), p.64-97
Hauptverfasser: Shi, Lei, Qi, Longxing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 97
container_issue 1
container_start_page 64
container_title Journal of biological dynamics
container_volume 16
creator Shi, Lei
Qi, Longxing
description In this paper, the actual background of the susceptible population being directly patients after inhaling a certain amount of PM is taken into account. The concentration response function of PM is introduced, and the SISP respiratory disease model is proposed. Qualitative theoretical analysis proves that the existence, local stability and global stability of the equilibria are all related to the daily emission of PM and PM pathogenic threshold K. Based on the sensitivity factor analysis and time-varying sensitivity analysis of parameters on the number of patients, it is found that the conversion rate β and the inhalation rate η has the largest positive correlation. The cure rate γ of infected persons has the greatest negative correlation on the number of patients. The control strategy formulated by the analysis results of optimal control theory is as follows: The first step is to improve the clearance rate of PM by reducing the PM emissions and increasing the intensity of dust removal. Moreover, such removal work must be maintained for a long time. The second step is to improve the cure rate of patients by being treated in time. After that, people should be reminded to wear masks and go out less so as to reduce the conversion rate of susceptible people becoming patients.
doi_str_mv 10.1080/17513758.2022.2027529
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_miscellaneous_2626229292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cbf3fb8310cb466399a0e2d3e55272f0</doaj_id><sourcerecordid>2626229292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-129f0154fc1cb6d02aff6190de67fdb9b86d40327ef38ea2f20ba0becf22c4d63</originalsourceid><addsrcrecordid>eNp9kU2LFDEQhoMo7rr6E5QGL15mzUcn6dyU9WtgQGH1HCpfkiHdGZMepP-9aWd2Dh6kICmKp94q6kXoJcG3BA_4LZGcMMmHW4opXR_JqXqErtf6hkkhHl9yPlyhZ7XuMeacSvEUXTFOqMJDf412H5YJxmg7mCAtNdaWuC4f5jhC6mye5pJTl0MHnU1Q65reb--_dcXXQyww57J0LlYP1dfn6EmAVP2L83-Dfnz6-P3uy2b39fP27v1uY3sm502bHTDhfbDEGuEwhRAEUdh5IYMzygzC9ZhR6QMbPNBAsQFsvA2U2t4JdoO2J12XYa8Ppe1aFp0h6r-FXH5qKHO0yWtrAgtmYARb0wvBlALsqWN-PQUNuGm9OWkdSv519HXWY6zWpwSTz8eqqWhBVYuGvv4H3edjaXdrlORiEFgx1Sh-omzJtRYfLgsSrFfr9IN1erVOn61rfa_O6kczenfpevCqAe9OQJxCLiP8ziU5PcOScgkFJhurZv-f8Qc_Dqbh</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756860939</pqid></control><display><type>article</type><title>Dynamic analysis and optimal control of a class of SISP respiratory diseases</title><source>Taylor &amp; Francis Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Shi, Lei ; Qi, Longxing</creator><creatorcontrib>Shi, Lei ; Qi, Longxing</creatorcontrib><description>In this paper, the actual background of the susceptible population being directly patients after inhaling a certain amount of PM is taken into account. The concentration response function of PM is introduced, and the SISP respiratory disease model is proposed. Qualitative theoretical analysis proves that the existence, local stability and global stability of the equilibria are all related to the daily emission of PM and PM pathogenic threshold K. Based on the sensitivity factor analysis and time-varying sensitivity analysis of parameters on the number of patients, it is found that the conversion rate β and the inhalation rate η has the largest positive correlation. The cure rate γ of infected persons has the greatest negative correlation on the number of patients. The control strategy formulated by the analysis results of optimal control theory is as follows: The first step is to improve the clearance rate of PM by reducing the PM emissions and increasing the intensity of dust removal. Moreover, such removal work must be maintained for a long time. The second step is to improve the cure rate of patients by being treated in time. After that, people should be reminded to wear masks and go out less so as to reduce the conversion rate of susceptible people becoming patients.</description><identifier>ISSN: 1751-3758</identifier><identifier>EISSN: 1751-3766</identifier><identifier>DOI: 10.1080/17513758.2022.2027529</identifier><identifier>PMID: 35129084</identifier><language>eng</language><publisher>England: Taylor &amp; Francis</publisher><subject>Air Pollutants - adverse effects ; Air Pollutants - analysis ; Control theory ; Emissions ; Environmental Monitoring - methods ; Factor analysis ; Humans ; Inhalation ; Models, Biological ; optimal control ; Particulate Matter - analysis ; pathogenic threshold ; pm $ _{2.5} $ emissions ; pm $ _{2.5} $ pathogenic threshold ; Respiratory disease ; Respiratory diseases ; Sensitivity analysis</subject><ispartof>Journal of biological dynamics, 2022-12, Vol.16 (1), p.64-97</ispartof><rights>2022 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group 2022</rights><rights>2022 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-129f0154fc1cb6d02aff6190de67fdb9b86d40327ef38ea2f20ba0becf22c4d63</citedby><cites>FETCH-LOGICAL-c437t-129f0154fc1cb6d02aff6190de67fdb9b86d40327ef38ea2f20ba0becf22c4d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/17513758.2022.2027529$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/17513758.2022.2027529$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,27481,27903,27904,59119,59120</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35129084$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Lei</creatorcontrib><creatorcontrib>Qi, Longxing</creatorcontrib><title>Dynamic analysis and optimal control of a class of SISP respiratory diseases</title><title>Journal of biological dynamics</title><addtitle>J Biol Dyn</addtitle><description>In this paper, the actual background of the susceptible population being directly patients after inhaling a certain amount of PM is taken into account. The concentration response function of PM is introduced, and the SISP respiratory disease model is proposed. Qualitative theoretical analysis proves that the existence, local stability and global stability of the equilibria are all related to the daily emission of PM and PM pathogenic threshold K. Based on the sensitivity factor analysis and time-varying sensitivity analysis of parameters on the number of patients, it is found that the conversion rate β and the inhalation rate η has the largest positive correlation. The cure rate γ of infected persons has the greatest negative correlation on the number of patients. The control strategy formulated by the analysis results of optimal control theory is as follows: The first step is to improve the clearance rate of PM by reducing the PM emissions and increasing the intensity of dust removal. Moreover, such removal work must be maintained for a long time. The second step is to improve the cure rate of patients by being treated in time. After that, people should be reminded to wear masks and go out less so as to reduce the conversion rate of susceptible people becoming patients.</description><subject>Air Pollutants - adverse effects</subject><subject>Air Pollutants - analysis</subject><subject>Control theory</subject><subject>Emissions</subject><subject>Environmental Monitoring - methods</subject><subject>Factor analysis</subject><subject>Humans</subject><subject>Inhalation</subject><subject>Models, Biological</subject><subject>optimal control</subject><subject>Particulate Matter - analysis</subject><subject>pathogenic threshold</subject><subject>pm $ _{2.5} $ emissions</subject><subject>pm $ _{2.5} $ pathogenic threshold</subject><subject>Respiratory disease</subject><subject>Respiratory diseases</subject><subject>Sensitivity analysis</subject><issn>1751-3758</issn><issn>1751-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU2LFDEQhoMo7rr6E5QGL15mzUcn6dyU9WtgQGH1HCpfkiHdGZMepP-9aWd2Dh6kICmKp94q6kXoJcG3BA_4LZGcMMmHW4opXR_JqXqErtf6hkkhHl9yPlyhZ7XuMeacSvEUXTFOqMJDf412H5YJxmg7mCAtNdaWuC4f5jhC6mye5pJTl0MHnU1Q65reb--_dcXXQyww57J0LlYP1dfn6EmAVP2L83-Dfnz6-P3uy2b39fP27v1uY3sm502bHTDhfbDEGuEwhRAEUdh5IYMzygzC9ZhR6QMbPNBAsQFsvA2U2t4JdoO2J12XYa8Ppe1aFp0h6r-FXH5qKHO0yWtrAgtmYARb0wvBlALsqWN-PQUNuGm9OWkdSv519HXWY6zWpwSTz8eqqWhBVYuGvv4H3edjaXdrlORiEFgx1Sh-omzJtRYfLgsSrFfr9IN1erVOn61rfa_O6kczenfpevCqAe9OQJxCLiP8ziU5PcOScgkFJhurZv-f8Qc_Dqbh</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Shi, Lei</creator><creator>Qi, Longxing</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><general>Taylor &amp; Francis Group</general><scope>0YH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FD</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>DOA</scope></search><sort><creationdate>202212</creationdate><title>Dynamic analysis and optimal control of a class of SISP respiratory diseases</title><author>Shi, Lei ; Qi, Longxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-129f0154fc1cb6d02aff6190de67fdb9b86d40327ef38ea2f20ba0becf22c4d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Air Pollutants - adverse effects</topic><topic>Air Pollutants - analysis</topic><topic>Control theory</topic><topic>Emissions</topic><topic>Environmental Monitoring - methods</topic><topic>Factor analysis</topic><topic>Humans</topic><topic>Inhalation</topic><topic>Models, Biological</topic><topic>optimal control</topic><topic>Particulate Matter - analysis</topic><topic>pathogenic threshold</topic><topic>pm $ _{2.5} $ emissions</topic><topic>pm $ _{2.5} $ pathogenic threshold</topic><topic>Respiratory disease</topic><topic>Respiratory diseases</topic><topic>Sensitivity analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Lei</creatorcontrib><creatorcontrib>Qi, Longxing</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of biological dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Lei</au><au>Qi, Longxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic analysis and optimal control of a class of SISP respiratory diseases</atitle><jtitle>Journal of biological dynamics</jtitle><addtitle>J Biol Dyn</addtitle><date>2022-12</date><risdate>2022</risdate><volume>16</volume><issue>1</issue><spage>64</spage><epage>97</epage><pages>64-97</pages><issn>1751-3758</issn><eissn>1751-3766</eissn><abstract>In this paper, the actual background of the susceptible population being directly patients after inhaling a certain amount of PM is taken into account. The concentration response function of PM is introduced, and the SISP respiratory disease model is proposed. Qualitative theoretical analysis proves that the existence, local stability and global stability of the equilibria are all related to the daily emission of PM and PM pathogenic threshold K. Based on the sensitivity factor analysis and time-varying sensitivity analysis of parameters on the number of patients, it is found that the conversion rate β and the inhalation rate η has the largest positive correlation. The cure rate γ of infected persons has the greatest negative correlation on the number of patients. The control strategy formulated by the analysis results of optimal control theory is as follows: The first step is to improve the clearance rate of PM by reducing the PM emissions and increasing the intensity of dust removal. Moreover, such removal work must be maintained for a long time. The second step is to improve the cure rate of patients by being treated in time. After that, people should be reminded to wear masks and go out less so as to reduce the conversion rate of susceptible people becoming patients.</abstract><cop>England</cop><pub>Taylor &amp; Francis</pub><pmid>35129084</pmid><doi>10.1080/17513758.2022.2027529</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-3758
ispartof Journal of biological dynamics, 2022-12, Vol.16 (1), p.64-97
issn 1751-3758
1751-3766
language eng
recordid cdi_proquest_miscellaneous_2626229292
source Taylor & Francis Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Air Pollutants - adverse effects
Air Pollutants - analysis
Control theory
Emissions
Environmental Monitoring - methods
Factor analysis
Humans
Inhalation
Models, Biological
optimal control
Particulate Matter - analysis
pathogenic threshold
pm $ _{2.5} $ emissions
pm $ _{2.5} $ pathogenic threshold
Respiratory disease
Respiratory diseases
Sensitivity analysis
title Dynamic analysis and optimal control of a class of SISP respiratory diseases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A36%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20analysis%20and%20optimal%20control%20of%20a%20class%20of%20SISP%20respiratory%20diseases&rft.jtitle=Journal%20of%20biological%20dynamics&rft.au=Shi,%20Lei&rft.date=2022-12&rft.volume=16&rft.issue=1&rft.spage=64&rft.epage=97&rft.pages=64-97&rft.issn=1751-3758&rft.eissn=1751-3766&rft_id=info:doi/10.1080/17513758.2022.2027529&rft_dat=%3Cproquest_infor%3E2626229292%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756860939&rft_id=info:pmid/35129084&rft_doaj_id=oai_doaj_org_article_cbf3fb8310cb466399a0e2d3e55272f0&rfr_iscdi=true