A predictive model integrating deep and radiomics features based on gadobenate dimeglumine-enhanced MRI for postoperative early recurrence of hepatocellular carcinoma

Purpose Hepatocellular carcinoma (HCC) is the most common liver cancer worldwide, and early recurrence of HCC after curative hepatic resection is indicative of poor prognoses. We aim to develop a predictive model for postoperative early recurrence of HCC based on deep and radiomics features from mul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiologia medica 2022-03, Vol.127 (3), p.259-271
Hauptverfasser: Gao, Wenyu, Wang, Wentao, Song, Danjun, Yang, Chun, Zhu, Kai, Zeng, Mengsu, Rao, Sheng-xiang, Wang, Manning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 271
container_issue 3
container_start_page 259
container_title Radiologia medica
container_volume 127
creator Gao, Wenyu
Wang, Wentao
Song, Danjun
Yang, Chun
Zhu, Kai
Zeng, Mengsu
Rao, Sheng-xiang
Wang, Manning
description Purpose Hepatocellular carcinoma (HCC) is the most common liver cancer worldwide, and early recurrence of HCC after curative hepatic resection is indicative of poor prognoses. We aim to develop a predictive model for postoperative early recurrence of HCC based on deep and radiomics features from multi-phasic magnetic resonance imaging (MRI). Materials and methods A total of 472 HCC patients were included and divided into the training ( n  = 378) and validation ( n  = 94) cohorts in the retrospective study. We separately extracted radiomics features and deep features from eight phases of gadoxetic acid-enhanced MRI and utilized the least absolute shrinkage and selection operator logistic regression algorithm for feature selection and model construction. We integrated the selected two types of features into a combined model and established a radiomics model as well as a deep learning (DL) model for comparison. Results In the training and validation cohorts, the combined model demonstrated better performance for stratifying patients at high risk of early recurrence (AUC of 0.911 and 0.840, accuracy of 0.779 and 0.777, sensitivity of 0.927 and 0.769, specificity 0.720 and 0.779) than the radiomics model (AUC of 0.740 and 0.780) and the DL model (AUC of 0.887 and 0.813). Conclusion The combined model integrating deep and radiomics features from multi-phasic MRI is efficient for noninvasively stratifying patients at high risk of early HCC recurrence after resection.
doi_str_mv 10.1007/s11547-021-01445-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2626227872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2644407864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-f5f1857e367a25b2225adc4a6ea5d6b088e5f77d28fbf8becaae923e62e6dc4c3</originalsourceid><addsrcrecordid>eNp9kctq3TAQhk1paNK0L9BFEXTTjVtJ1u0sQ-glkFIIydqMpZGjYEuuZAfyQn3O6vSkF7oos9CAvvln4GuaV4y-Y5Tq94UxKXRLOWspE0K26klzwgxXrdqZ7ulf_XHzvJQ7SgVldPesOe4k4zst9Unz_YwsGV2wa7hHMieHEwlxxTHDGuJIHOJCIDqSwYU0B1uIR1i3jIUMUNCRFMkILg0YYUXiwozjtM0hYovxFqKtyJerC-JTJksqa1pwH12XIeTpgWS0W85YOZI8ucUF1mRxmrYJMrGQbYhphhfNkYep4MvH97S5-fjh-vxze_n108X52WVrOy3X1kvPjNTYKQ1cDpxzCc4KUAjSqYEag9Jr7bjxgzcDWgDc8Q4VR1U52502bw-5S07fNixrP4eyPwcipq30XNXi2mhe0Tf_oHdpy7FeVykhBNVGiUrxA2VzKiWj75ccZsgPPaP93mJ_sNhXi_1Pi72qQ68fo7dhRvd75Je2CnQHoNSvOGL-s_s_sT8AldWscA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2644407864</pqid></control><display><type>article</type><title>A predictive model integrating deep and radiomics features based on gadobenate dimeglumine-enhanced MRI for postoperative early recurrence of hepatocellular carcinoma</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Gao, Wenyu ; Wang, Wentao ; Song, Danjun ; Yang, Chun ; Zhu, Kai ; Zeng, Mengsu ; Rao, Sheng-xiang ; Wang, Manning</creator><creatorcontrib>Gao, Wenyu ; Wang, Wentao ; Song, Danjun ; Yang, Chun ; Zhu, Kai ; Zeng, Mengsu ; Rao, Sheng-xiang ; Wang, Manning</creatorcontrib><description>Purpose Hepatocellular carcinoma (HCC) is the most common liver cancer worldwide, and early recurrence of HCC after curative hepatic resection is indicative of poor prognoses. We aim to develop a predictive model for postoperative early recurrence of HCC based on deep and radiomics features from multi-phasic magnetic resonance imaging (MRI). Materials and methods A total of 472 HCC patients were included and divided into the training ( n  = 378) and validation ( n  = 94) cohorts in the retrospective study. We separately extracted radiomics features and deep features from eight phases of gadoxetic acid-enhanced MRI and utilized the least absolute shrinkage and selection operator logistic regression algorithm for feature selection and model construction. We integrated the selected two types of features into a combined model and established a radiomics model as well as a deep learning (DL) model for comparison. Results In the training and validation cohorts, the combined model demonstrated better performance for stratifying patients at high risk of early recurrence (AUC of 0.911 and 0.840, accuracy of 0.779 and 0.777, sensitivity of 0.927 and 0.769, specificity 0.720 and 0.779) than the radiomics model (AUC of 0.740 and 0.780) and the DL model (AUC of 0.887 and 0.813). Conclusion The combined model integrating deep and radiomics features from multi-phasic MRI is efficient for noninvasively stratifying patients at high risk of early HCC recurrence after resection.</description><identifier>ISSN: 1826-6983</identifier><identifier>ISSN: 0033-8362</identifier><identifier>EISSN: 1826-6983</identifier><identifier>DOI: 10.1007/s11547-021-01445-6</identifier><identifier>PMID: 35129757</identifier><language>eng</language><publisher>Milan: Springer Milan</publisher><subject>Abdominal Radiology ; Algorithms ; Carcinoma, Hepatocellular - diagnostic imaging ; Carcinoma, Hepatocellular - pathology ; Carcinoma, Hepatocellular - surgery ; Diagnostic Radiology ; Feature extraction ; Humans ; Imaging ; Interventional Radiology ; Liver cancer ; Liver Neoplasms - diagnostic imaging ; Liver Neoplasms - pathology ; Liver Neoplasms - surgery ; Machine learning ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Medicine ; Medicine &amp; Public Health ; Meglumine - analogs &amp; derivatives ; Neuroradiology ; Organometallic Compounds ; Prediction models ; Radiology ; Radiomics ; Retrospective Studies ; Training ; Ultrasound</subject><ispartof>Radiologia medica, 2022-03, Vol.127 (3), p.259-271</ispartof><rights>Italian Society of Medical Radiology 2022</rights><rights>2022. Italian Society of Medical Radiology.</rights><rights>Italian Society of Medical Radiology 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-f5f1857e367a25b2225adc4a6ea5d6b088e5f77d28fbf8becaae923e62e6dc4c3</citedby><cites>FETCH-LOGICAL-c375t-f5f1857e367a25b2225adc4a6ea5d6b088e5f77d28fbf8becaae923e62e6dc4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11547-021-01445-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11547-021-01445-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35129757$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Wenyu</creatorcontrib><creatorcontrib>Wang, Wentao</creatorcontrib><creatorcontrib>Song, Danjun</creatorcontrib><creatorcontrib>Yang, Chun</creatorcontrib><creatorcontrib>Zhu, Kai</creatorcontrib><creatorcontrib>Zeng, Mengsu</creatorcontrib><creatorcontrib>Rao, Sheng-xiang</creatorcontrib><creatorcontrib>Wang, Manning</creatorcontrib><title>A predictive model integrating deep and radiomics features based on gadobenate dimeglumine-enhanced MRI for postoperative early recurrence of hepatocellular carcinoma</title><title>Radiologia medica</title><addtitle>Radiol med</addtitle><addtitle>Radiol Med</addtitle><description>Purpose Hepatocellular carcinoma (HCC) is the most common liver cancer worldwide, and early recurrence of HCC after curative hepatic resection is indicative of poor prognoses. We aim to develop a predictive model for postoperative early recurrence of HCC based on deep and radiomics features from multi-phasic magnetic resonance imaging (MRI). Materials and methods A total of 472 HCC patients were included and divided into the training ( n  = 378) and validation ( n  = 94) cohorts in the retrospective study. We separately extracted radiomics features and deep features from eight phases of gadoxetic acid-enhanced MRI and utilized the least absolute shrinkage and selection operator logistic regression algorithm for feature selection and model construction. We integrated the selected two types of features into a combined model and established a radiomics model as well as a deep learning (DL) model for comparison. Results In the training and validation cohorts, the combined model demonstrated better performance for stratifying patients at high risk of early recurrence (AUC of 0.911 and 0.840, accuracy of 0.779 and 0.777, sensitivity of 0.927 and 0.769, specificity 0.720 and 0.779) than the radiomics model (AUC of 0.740 and 0.780) and the DL model (AUC of 0.887 and 0.813). Conclusion The combined model integrating deep and radiomics features from multi-phasic MRI is efficient for noninvasively stratifying patients at high risk of early HCC recurrence after resection.</description><subject>Abdominal Radiology</subject><subject>Algorithms</subject><subject>Carcinoma, Hepatocellular - diagnostic imaging</subject><subject>Carcinoma, Hepatocellular - pathology</subject><subject>Carcinoma, Hepatocellular - surgery</subject><subject>Diagnostic Radiology</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Imaging</subject><subject>Interventional Radiology</subject><subject>Liver cancer</subject><subject>Liver Neoplasms - diagnostic imaging</subject><subject>Liver Neoplasms - pathology</subject><subject>Liver Neoplasms - surgery</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Meglumine - analogs &amp; derivatives</subject><subject>Neuroradiology</subject><subject>Organometallic Compounds</subject><subject>Prediction models</subject><subject>Radiology</subject><subject>Radiomics</subject><subject>Retrospective Studies</subject><subject>Training</subject><subject>Ultrasound</subject><issn>1826-6983</issn><issn>0033-8362</issn><issn>1826-6983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctq3TAQhk1paNK0L9BFEXTTjVtJ1u0sQ-glkFIIydqMpZGjYEuuZAfyQn3O6vSkF7oos9CAvvln4GuaV4y-Y5Tq94UxKXRLOWspE0K26klzwgxXrdqZ7ulf_XHzvJQ7SgVldPesOe4k4zst9Unz_YwsGV2wa7hHMieHEwlxxTHDGuJIHOJCIDqSwYU0B1uIR1i3jIUMUNCRFMkILg0YYUXiwozjtM0hYovxFqKtyJerC-JTJksqa1pwH12XIeTpgWS0W85YOZI8ucUF1mRxmrYJMrGQbYhphhfNkYep4MvH97S5-fjh-vxze_n108X52WVrOy3X1kvPjNTYKQ1cDpxzCc4KUAjSqYEag9Jr7bjxgzcDWgDc8Q4VR1U52502bw-5S07fNixrP4eyPwcipq30XNXi2mhe0Tf_oHdpy7FeVykhBNVGiUrxA2VzKiWj75ccZsgPPaP93mJ_sNhXi_1Pi72qQ68fo7dhRvd75Je2CnQHoNSvOGL-s_s_sT8AldWscA</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Gao, Wenyu</creator><creator>Wang, Wentao</creator><creator>Song, Danjun</creator><creator>Yang, Chun</creator><creator>Zhu, Kai</creator><creator>Zeng, Mengsu</creator><creator>Rao, Sheng-xiang</creator><creator>Wang, Manning</creator><general>Springer Milan</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20220301</creationdate><title>A predictive model integrating deep and radiomics features based on gadobenate dimeglumine-enhanced MRI for postoperative early recurrence of hepatocellular carcinoma</title><author>Gao, Wenyu ; Wang, Wentao ; Song, Danjun ; Yang, Chun ; Zhu, Kai ; Zeng, Mengsu ; Rao, Sheng-xiang ; Wang, Manning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-f5f1857e367a25b2225adc4a6ea5d6b088e5f77d28fbf8becaae923e62e6dc4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abdominal Radiology</topic><topic>Algorithms</topic><topic>Carcinoma, Hepatocellular - diagnostic imaging</topic><topic>Carcinoma, Hepatocellular - pathology</topic><topic>Carcinoma, Hepatocellular - surgery</topic><topic>Diagnostic Radiology</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Imaging</topic><topic>Interventional Radiology</topic><topic>Liver cancer</topic><topic>Liver Neoplasms - diagnostic imaging</topic><topic>Liver Neoplasms - pathology</topic><topic>Liver Neoplasms - surgery</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Meglumine - analogs &amp; derivatives</topic><topic>Neuroradiology</topic><topic>Organometallic Compounds</topic><topic>Prediction models</topic><topic>Radiology</topic><topic>Radiomics</topic><topic>Retrospective Studies</topic><topic>Training</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Wenyu</creatorcontrib><creatorcontrib>Wang, Wentao</creatorcontrib><creatorcontrib>Song, Danjun</creatorcontrib><creatorcontrib>Yang, Chun</creatorcontrib><creatorcontrib>Zhu, Kai</creatorcontrib><creatorcontrib>Zeng, Mengsu</creatorcontrib><creatorcontrib>Rao, Sheng-xiang</creatorcontrib><creatorcontrib>Wang, Manning</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Radiologia medica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Wenyu</au><au>Wang, Wentao</au><au>Song, Danjun</au><au>Yang, Chun</au><au>Zhu, Kai</au><au>Zeng, Mengsu</au><au>Rao, Sheng-xiang</au><au>Wang, Manning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A predictive model integrating deep and radiomics features based on gadobenate dimeglumine-enhanced MRI for postoperative early recurrence of hepatocellular carcinoma</atitle><jtitle>Radiologia medica</jtitle><stitle>Radiol med</stitle><addtitle>Radiol Med</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>127</volume><issue>3</issue><spage>259</spage><epage>271</epage><pages>259-271</pages><issn>1826-6983</issn><issn>0033-8362</issn><eissn>1826-6983</eissn><abstract>Purpose Hepatocellular carcinoma (HCC) is the most common liver cancer worldwide, and early recurrence of HCC after curative hepatic resection is indicative of poor prognoses. We aim to develop a predictive model for postoperative early recurrence of HCC based on deep and radiomics features from multi-phasic magnetic resonance imaging (MRI). Materials and methods A total of 472 HCC patients were included and divided into the training ( n  = 378) and validation ( n  = 94) cohorts in the retrospective study. We separately extracted radiomics features and deep features from eight phases of gadoxetic acid-enhanced MRI and utilized the least absolute shrinkage and selection operator logistic regression algorithm for feature selection and model construction. We integrated the selected two types of features into a combined model and established a radiomics model as well as a deep learning (DL) model for comparison. Results In the training and validation cohorts, the combined model demonstrated better performance for stratifying patients at high risk of early recurrence (AUC of 0.911 and 0.840, accuracy of 0.779 and 0.777, sensitivity of 0.927 and 0.769, specificity 0.720 and 0.779) than the radiomics model (AUC of 0.740 and 0.780) and the DL model (AUC of 0.887 and 0.813). Conclusion The combined model integrating deep and radiomics features from multi-phasic MRI is efficient for noninvasively stratifying patients at high risk of early HCC recurrence after resection.</abstract><cop>Milan</cop><pub>Springer Milan</pub><pmid>35129757</pmid><doi>10.1007/s11547-021-01445-6</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1826-6983
ispartof Radiologia medica, 2022-03, Vol.127 (3), p.259-271
issn 1826-6983
0033-8362
1826-6983
language eng
recordid cdi_proquest_miscellaneous_2626227872
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Abdominal Radiology
Algorithms
Carcinoma, Hepatocellular - diagnostic imaging
Carcinoma, Hepatocellular - pathology
Carcinoma, Hepatocellular - surgery
Diagnostic Radiology
Feature extraction
Humans
Imaging
Interventional Radiology
Liver cancer
Liver Neoplasms - diagnostic imaging
Liver Neoplasms - pathology
Liver Neoplasms - surgery
Machine learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medicine
Medicine & Public Health
Meglumine - analogs & derivatives
Neuroradiology
Organometallic Compounds
Prediction models
Radiology
Radiomics
Retrospective Studies
Training
Ultrasound
title A predictive model integrating deep and radiomics features based on gadobenate dimeglumine-enhanced MRI for postoperative early recurrence of hepatocellular carcinoma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A22%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20predictive%20model%20integrating%20deep%20and%20radiomics%20features%20based%20on%20gadobenate%20dimeglumine-enhanced%20MRI%20for%20postoperative%20early%20recurrence%20of%20hepatocellular%20carcinoma&rft.jtitle=Radiologia%20medica&rft.au=Gao,%20Wenyu&rft.date=2022-03-01&rft.volume=127&rft.issue=3&rft.spage=259&rft.epage=271&rft.pages=259-271&rft.issn=1826-6983&rft.eissn=1826-6983&rft_id=info:doi/10.1007/s11547-021-01445-6&rft_dat=%3Cproquest_cross%3E2644407864%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2644407864&rft_id=info:pmid/35129757&rfr_iscdi=true