A predictive model integrating deep and radiomics features based on gadobenate dimeglumine-enhanced MRI for postoperative early recurrence of hepatocellular carcinoma
Purpose Hepatocellular carcinoma (HCC) is the most common liver cancer worldwide, and early recurrence of HCC after curative hepatic resection is indicative of poor prognoses. We aim to develop a predictive model for postoperative early recurrence of HCC based on deep and radiomics features from mul...
Gespeichert in:
Veröffentlicht in: | Radiologia medica 2022-03, Vol.127 (3), p.259-271 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 271 |
---|---|
container_issue | 3 |
container_start_page | 259 |
container_title | Radiologia medica |
container_volume | 127 |
creator | Gao, Wenyu Wang, Wentao Song, Danjun Yang, Chun Zhu, Kai Zeng, Mengsu Rao, Sheng-xiang Wang, Manning |
description | Purpose
Hepatocellular carcinoma (HCC) is the most common liver cancer worldwide, and early recurrence of HCC after curative hepatic resection is indicative of poor prognoses. We aim to develop a predictive model for postoperative early recurrence of HCC based on deep and radiomics features from multi-phasic magnetic resonance imaging (MRI).
Materials and methods
A total of 472 HCC patients were included and divided into the training (
n
= 378) and validation (
n
= 94) cohorts in the retrospective study. We separately extracted radiomics features and deep features from eight phases of gadoxetic acid-enhanced MRI and utilized the least absolute shrinkage and selection operator logistic regression algorithm for feature selection and model construction. We integrated the selected two types of features into a combined model and established a radiomics model as well as a deep learning (DL) model for comparison.
Results
In the training and validation cohorts, the combined model demonstrated better performance for stratifying patients at high risk of early recurrence (AUC of 0.911 and 0.840, accuracy of 0.779 and 0.777, sensitivity of 0.927 and 0.769, specificity 0.720 and 0.779) than the radiomics model (AUC of 0.740 and 0.780) and the DL model (AUC of 0.887 and 0.813).
Conclusion
The combined model integrating deep and radiomics features from multi-phasic MRI is efficient for noninvasively stratifying patients at high risk of early HCC recurrence after resection. |
doi_str_mv | 10.1007/s11547-021-01445-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2626227872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2644407864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-f5f1857e367a25b2225adc4a6ea5d6b088e5f77d28fbf8becaae923e62e6dc4c3</originalsourceid><addsrcrecordid>eNp9kctq3TAQhk1paNK0L9BFEXTTjVtJ1u0sQ-glkFIIydqMpZGjYEuuZAfyQn3O6vSkF7oos9CAvvln4GuaV4y-Y5Tq94UxKXRLOWspE0K26klzwgxXrdqZ7ulf_XHzvJQ7SgVldPesOe4k4zst9Unz_YwsGV2wa7hHMieHEwlxxTHDGuJIHOJCIDqSwYU0B1uIR1i3jIUMUNCRFMkILg0YYUXiwozjtM0hYovxFqKtyJerC-JTJksqa1pwH12XIeTpgWS0W85YOZI8ucUF1mRxmrYJMrGQbYhphhfNkYep4MvH97S5-fjh-vxze_n108X52WVrOy3X1kvPjNTYKQ1cDpxzCc4KUAjSqYEag9Jr7bjxgzcDWgDc8Q4VR1U52502bw-5S07fNixrP4eyPwcipq30XNXi2mhe0Tf_oHdpy7FeVykhBNVGiUrxA2VzKiWj75ccZsgPPaP93mJ_sNhXi_1Pi72qQ68fo7dhRvd75Je2CnQHoNSvOGL-s_s_sT8AldWscA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2644407864</pqid></control><display><type>article</type><title>A predictive model integrating deep and radiomics features based on gadobenate dimeglumine-enhanced MRI for postoperative early recurrence of hepatocellular carcinoma</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Gao, Wenyu ; Wang, Wentao ; Song, Danjun ; Yang, Chun ; Zhu, Kai ; Zeng, Mengsu ; Rao, Sheng-xiang ; Wang, Manning</creator><creatorcontrib>Gao, Wenyu ; Wang, Wentao ; Song, Danjun ; Yang, Chun ; Zhu, Kai ; Zeng, Mengsu ; Rao, Sheng-xiang ; Wang, Manning</creatorcontrib><description>Purpose
Hepatocellular carcinoma (HCC) is the most common liver cancer worldwide, and early recurrence of HCC after curative hepatic resection is indicative of poor prognoses. We aim to develop a predictive model for postoperative early recurrence of HCC based on deep and radiomics features from multi-phasic magnetic resonance imaging (MRI).
Materials and methods
A total of 472 HCC patients were included and divided into the training (
n
= 378) and validation (
n
= 94) cohorts in the retrospective study. We separately extracted radiomics features and deep features from eight phases of gadoxetic acid-enhanced MRI and utilized the least absolute shrinkage and selection operator logistic regression algorithm for feature selection and model construction. We integrated the selected two types of features into a combined model and established a radiomics model as well as a deep learning (DL) model for comparison.
Results
In the training and validation cohorts, the combined model demonstrated better performance for stratifying patients at high risk of early recurrence (AUC of 0.911 and 0.840, accuracy of 0.779 and 0.777, sensitivity of 0.927 and 0.769, specificity 0.720 and 0.779) than the radiomics model (AUC of 0.740 and 0.780) and the DL model (AUC of 0.887 and 0.813).
Conclusion
The combined model integrating deep and radiomics features from multi-phasic MRI is efficient for noninvasively stratifying patients at high risk of early HCC recurrence after resection.</description><identifier>ISSN: 1826-6983</identifier><identifier>ISSN: 0033-8362</identifier><identifier>EISSN: 1826-6983</identifier><identifier>DOI: 10.1007/s11547-021-01445-6</identifier><identifier>PMID: 35129757</identifier><language>eng</language><publisher>Milan: Springer Milan</publisher><subject>Abdominal Radiology ; Algorithms ; Carcinoma, Hepatocellular - diagnostic imaging ; Carcinoma, Hepatocellular - pathology ; Carcinoma, Hepatocellular - surgery ; Diagnostic Radiology ; Feature extraction ; Humans ; Imaging ; Interventional Radiology ; Liver cancer ; Liver Neoplasms - diagnostic imaging ; Liver Neoplasms - pathology ; Liver Neoplasms - surgery ; Machine learning ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Medicine ; Medicine & Public Health ; Meglumine - analogs & derivatives ; Neuroradiology ; Organometallic Compounds ; Prediction models ; Radiology ; Radiomics ; Retrospective Studies ; Training ; Ultrasound</subject><ispartof>Radiologia medica, 2022-03, Vol.127 (3), p.259-271</ispartof><rights>Italian Society of Medical Radiology 2022</rights><rights>2022. Italian Society of Medical Radiology.</rights><rights>Italian Society of Medical Radiology 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-f5f1857e367a25b2225adc4a6ea5d6b088e5f77d28fbf8becaae923e62e6dc4c3</citedby><cites>FETCH-LOGICAL-c375t-f5f1857e367a25b2225adc4a6ea5d6b088e5f77d28fbf8becaae923e62e6dc4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11547-021-01445-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11547-021-01445-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35129757$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Wenyu</creatorcontrib><creatorcontrib>Wang, Wentao</creatorcontrib><creatorcontrib>Song, Danjun</creatorcontrib><creatorcontrib>Yang, Chun</creatorcontrib><creatorcontrib>Zhu, Kai</creatorcontrib><creatorcontrib>Zeng, Mengsu</creatorcontrib><creatorcontrib>Rao, Sheng-xiang</creatorcontrib><creatorcontrib>Wang, Manning</creatorcontrib><title>A predictive model integrating deep and radiomics features based on gadobenate dimeglumine-enhanced MRI for postoperative early recurrence of hepatocellular carcinoma</title><title>Radiologia medica</title><addtitle>Radiol med</addtitle><addtitle>Radiol Med</addtitle><description>Purpose
Hepatocellular carcinoma (HCC) is the most common liver cancer worldwide, and early recurrence of HCC after curative hepatic resection is indicative of poor prognoses. We aim to develop a predictive model for postoperative early recurrence of HCC based on deep and radiomics features from multi-phasic magnetic resonance imaging (MRI).
Materials and methods
A total of 472 HCC patients were included and divided into the training (
n
= 378) and validation (
n
= 94) cohorts in the retrospective study. We separately extracted radiomics features and deep features from eight phases of gadoxetic acid-enhanced MRI and utilized the least absolute shrinkage and selection operator logistic regression algorithm for feature selection and model construction. We integrated the selected two types of features into a combined model and established a radiomics model as well as a deep learning (DL) model for comparison.
Results
In the training and validation cohorts, the combined model demonstrated better performance for stratifying patients at high risk of early recurrence (AUC of 0.911 and 0.840, accuracy of 0.779 and 0.777, sensitivity of 0.927 and 0.769, specificity 0.720 and 0.779) than the radiomics model (AUC of 0.740 and 0.780) and the DL model (AUC of 0.887 and 0.813).
Conclusion
The combined model integrating deep and radiomics features from multi-phasic MRI is efficient for noninvasively stratifying patients at high risk of early HCC recurrence after resection.</description><subject>Abdominal Radiology</subject><subject>Algorithms</subject><subject>Carcinoma, Hepatocellular - diagnostic imaging</subject><subject>Carcinoma, Hepatocellular - pathology</subject><subject>Carcinoma, Hepatocellular - surgery</subject><subject>Diagnostic Radiology</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Imaging</subject><subject>Interventional Radiology</subject><subject>Liver cancer</subject><subject>Liver Neoplasms - diagnostic imaging</subject><subject>Liver Neoplasms - pathology</subject><subject>Liver Neoplasms - surgery</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Meglumine - analogs & derivatives</subject><subject>Neuroradiology</subject><subject>Organometallic Compounds</subject><subject>Prediction models</subject><subject>Radiology</subject><subject>Radiomics</subject><subject>Retrospective Studies</subject><subject>Training</subject><subject>Ultrasound</subject><issn>1826-6983</issn><issn>0033-8362</issn><issn>1826-6983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctq3TAQhk1paNK0L9BFEXTTjVtJ1u0sQ-glkFIIydqMpZGjYEuuZAfyQn3O6vSkF7oos9CAvvln4GuaV4y-Y5Tq94UxKXRLOWspE0K26klzwgxXrdqZ7ulf_XHzvJQ7SgVldPesOe4k4zst9Unz_YwsGV2wa7hHMieHEwlxxTHDGuJIHOJCIDqSwYU0B1uIR1i3jIUMUNCRFMkILg0YYUXiwozjtM0hYovxFqKtyJerC-JTJksqa1pwH12XIeTpgWS0W85YOZI8ucUF1mRxmrYJMrGQbYhphhfNkYep4MvH97S5-fjh-vxze_n108X52WVrOy3X1kvPjNTYKQ1cDpxzCc4KUAjSqYEag9Jr7bjxgzcDWgDc8Q4VR1U52502bw-5S07fNixrP4eyPwcipq30XNXi2mhe0Tf_oHdpy7FeVykhBNVGiUrxA2VzKiWj75ccZsgPPaP93mJ_sNhXi_1Pi72qQ68fo7dhRvd75Je2CnQHoNSvOGL-s_s_sT8AldWscA</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Gao, Wenyu</creator><creator>Wang, Wentao</creator><creator>Song, Danjun</creator><creator>Yang, Chun</creator><creator>Zhu, Kai</creator><creator>Zeng, Mengsu</creator><creator>Rao, Sheng-xiang</creator><creator>Wang, Manning</creator><general>Springer Milan</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20220301</creationdate><title>A predictive model integrating deep and radiomics features based on gadobenate dimeglumine-enhanced MRI for postoperative early recurrence of hepatocellular carcinoma</title><author>Gao, Wenyu ; Wang, Wentao ; Song, Danjun ; Yang, Chun ; Zhu, Kai ; Zeng, Mengsu ; Rao, Sheng-xiang ; Wang, Manning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-f5f1857e367a25b2225adc4a6ea5d6b088e5f77d28fbf8becaae923e62e6dc4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abdominal Radiology</topic><topic>Algorithms</topic><topic>Carcinoma, Hepatocellular - diagnostic imaging</topic><topic>Carcinoma, Hepatocellular - pathology</topic><topic>Carcinoma, Hepatocellular - surgery</topic><topic>Diagnostic Radiology</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Imaging</topic><topic>Interventional Radiology</topic><topic>Liver cancer</topic><topic>Liver Neoplasms - diagnostic imaging</topic><topic>Liver Neoplasms - pathology</topic><topic>Liver Neoplasms - surgery</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Meglumine - analogs & derivatives</topic><topic>Neuroradiology</topic><topic>Organometallic Compounds</topic><topic>Prediction models</topic><topic>Radiology</topic><topic>Radiomics</topic><topic>Retrospective Studies</topic><topic>Training</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Wenyu</creatorcontrib><creatorcontrib>Wang, Wentao</creatorcontrib><creatorcontrib>Song, Danjun</creatorcontrib><creatorcontrib>Yang, Chun</creatorcontrib><creatorcontrib>Zhu, Kai</creatorcontrib><creatorcontrib>Zeng, Mengsu</creatorcontrib><creatorcontrib>Rao, Sheng-xiang</creatorcontrib><creatorcontrib>Wang, Manning</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Radiologia medica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Wenyu</au><au>Wang, Wentao</au><au>Song, Danjun</au><au>Yang, Chun</au><au>Zhu, Kai</au><au>Zeng, Mengsu</au><au>Rao, Sheng-xiang</au><au>Wang, Manning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A predictive model integrating deep and radiomics features based on gadobenate dimeglumine-enhanced MRI for postoperative early recurrence of hepatocellular carcinoma</atitle><jtitle>Radiologia medica</jtitle><stitle>Radiol med</stitle><addtitle>Radiol Med</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>127</volume><issue>3</issue><spage>259</spage><epage>271</epage><pages>259-271</pages><issn>1826-6983</issn><issn>0033-8362</issn><eissn>1826-6983</eissn><abstract>Purpose
Hepatocellular carcinoma (HCC) is the most common liver cancer worldwide, and early recurrence of HCC after curative hepatic resection is indicative of poor prognoses. We aim to develop a predictive model for postoperative early recurrence of HCC based on deep and radiomics features from multi-phasic magnetic resonance imaging (MRI).
Materials and methods
A total of 472 HCC patients were included and divided into the training (
n
= 378) and validation (
n
= 94) cohorts in the retrospective study. We separately extracted radiomics features and deep features from eight phases of gadoxetic acid-enhanced MRI and utilized the least absolute shrinkage and selection operator logistic regression algorithm for feature selection and model construction. We integrated the selected two types of features into a combined model and established a radiomics model as well as a deep learning (DL) model for comparison.
Results
In the training and validation cohorts, the combined model demonstrated better performance for stratifying patients at high risk of early recurrence (AUC of 0.911 and 0.840, accuracy of 0.779 and 0.777, sensitivity of 0.927 and 0.769, specificity 0.720 and 0.779) than the radiomics model (AUC of 0.740 and 0.780) and the DL model (AUC of 0.887 and 0.813).
Conclusion
The combined model integrating deep and radiomics features from multi-phasic MRI is efficient for noninvasively stratifying patients at high risk of early HCC recurrence after resection.</abstract><cop>Milan</cop><pub>Springer Milan</pub><pmid>35129757</pmid><doi>10.1007/s11547-021-01445-6</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1826-6983 |
ispartof | Radiologia medica, 2022-03, Vol.127 (3), p.259-271 |
issn | 1826-6983 0033-8362 1826-6983 |
language | eng |
recordid | cdi_proquest_miscellaneous_2626227872 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Abdominal Radiology Algorithms Carcinoma, Hepatocellular - diagnostic imaging Carcinoma, Hepatocellular - pathology Carcinoma, Hepatocellular - surgery Diagnostic Radiology Feature extraction Humans Imaging Interventional Radiology Liver cancer Liver Neoplasms - diagnostic imaging Liver Neoplasms - pathology Liver Neoplasms - surgery Machine learning Magnetic resonance imaging Magnetic Resonance Imaging - methods Medicine Medicine & Public Health Meglumine - analogs & derivatives Neuroradiology Organometallic Compounds Prediction models Radiology Radiomics Retrospective Studies Training Ultrasound |
title | A predictive model integrating deep and radiomics features based on gadobenate dimeglumine-enhanced MRI for postoperative early recurrence of hepatocellular carcinoma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A22%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20predictive%20model%20integrating%20deep%20and%20radiomics%20features%20based%20on%20gadobenate%20dimeglumine-enhanced%20MRI%20for%20postoperative%20early%20recurrence%20of%20hepatocellular%20carcinoma&rft.jtitle=Radiologia%20medica&rft.au=Gao,%20Wenyu&rft.date=2022-03-01&rft.volume=127&rft.issue=3&rft.spage=259&rft.epage=271&rft.pages=259-271&rft.issn=1826-6983&rft.eissn=1826-6983&rft_id=info:doi/10.1007/s11547-021-01445-6&rft_dat=%3Cproquest_cross%3E2644407864%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2644407864&rft_id=info:pmid/35129757&rfr_iscdi=true |