One-pot synthesis and multifunctional surface modification of lithium-rich manganese-based cathode for enhanced structural stability and low-temperature performance

[Display omitted] High-energy–density lithium-rich Li1.2Ni0.13Co0.13Mn0.54O2 is regarded as one of the most promising cathode materials for lithium-ion batteries. However, its practical application is restricted by critical kinetics drawbacks and poor low-temperature electrochemical performances. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2022-06, Vol.615, p.1-9
Hauptverfasser: Shen, Chao, Liu, Yiqian, Li, Wenrong, Liu, Xiaoyu, Xie, Jingwei, Jiang, Jinlong, Jiang, Yong, Zhao, Bing, Zhang, Jiujun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue
container_start_page 1
container_title Journal of colloid and interface science
container_volume 615
creator Shen, Chao
Liu, Yiqian
Li, Wenrong
Liu, Xiaoyu
Xie, Jingwei
Jiang, Jinlong
Jiang, Yong
Zhao, Bing
Zhang, Jiujun
description [Display omitted] High-energy–density lithium-rich Li1.2Ni0.13Co0.13Mn0.54O2 is regarded as one of the most promising cathode materials for lithium-ion batteries. However, its practical application is restricted by critical kinetics drawbacks and poor low-temperature electrochemical performances. In this research, Li1.2Ni0.13Co0.13Mn0.54O2 submicron particles coated by a Li7La3Zr2O12 (LLZO) layer and co-doped by La/Zr cations has been fabricated via a facile one-pot sol–gel technique and subsequent heat treatment. The coating LLZO layer with a few nanometers is able to build a rapid lithium-ion transport channel for adjacent particles and suppress severe side reactions between active material and the electrolyte. Moreover, large-radius La/Zr cations co-doping can broaden the diffusion paths of lithium ions, hinder the detrimental structural transformation, and improve the electrochemical structure stability of the cathode during repeated cycles. Owing to numerous merits from this multifunctional surface modification strategy, the modified Li1.2Ni0.13Co0.13Mn0.54O2 composite exhibits the significantly decreased interface impedance, enhanced Li+ diffusion kinetics and mitigated phase transformation, as well as excellent low-temperature electrochemical performance. It can contribute ultrahigh capacities of 173.8 mAh g−1 at −10 ℃ and 134.1 mAh g−1 at −20 ℃, respectively, displaying great application prospects of Li-rich cathode materials.
doi_str_mv 10.1016/j.jcis.2022.01.176
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2626225268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979722001965</els_id><sourcerecordid>2626225268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-1a0094601a3faa3519b1706ad71e9ae0f23cab85db7ec7ff3184aaa51f2212513</originalsourceid><addsrcrecordid>eNp9kU-P1SAUxYnROM_RL-DCsHTTyqWv7Wvixkz8M8kks9E1uaUXy0uBJ1DN-z5-UKlvdDlhAbn8ziGHw9hrEDUI6N4d66O2qZZCylpADX33hO1ADG3Vg2iesp0QEqqhH_or9iKloxAAbTs8Z1dNC3K_H_od-33vqTqFzNPZ55mSTRz9xN26ZGtWr7MNHhee1mhQE3dhssZq3MY8GL7YPNvVVdHqmTv039FTomrERBMv2Bwm4iZETn5Gr8sw5bjqvMbNNONoi8P575NL-FVlcieKWK6Jl0MRuk31kj0zuCR69bBfs2-fPn69-VLd3X--vflwV-mm7XIFKMSw7wRgYxBLxmGEXnQ49UADkjCy0Tge2mnsSffGNHDYI2ILRkqQLTTX7O3F9xTDj5VSVs4mTctSUoU1KdmVJVvZHQoqL6iOIaVIRp2idRjPCoTa2lFHtbWjtnaUAFXaKaI3D_7r6Gj6L_lXRwHeXwAqKX9aiippS9u_2Ug6qynYx_z_AIY5pf4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2626225268</pqid></control><display><type>article</type><title>One-pot synthesis and multifunctional surface modification of lithium-rich manganese-based cathode for enhanced structural stability and low-temperature performance</title><source>Elsevier ScienceDirect Journals</source><creator>Shen, Chao ; Liu, Yiqian ; Li, Wenrong ; Liu, Xiaoyu ; Xie, Jingwei ; Jiang, Jinlong ; Jiang, Yong ; Zhao, Bing ; Zhang, Jiujun</creator><creatorcontrib>Shen, Chao ; Liu, Yiqian ; Li, Wenrong ; Liu, Xiaoyu ; Xie, Jingwei ; Jiang, Jinlong ; Jiang, Yong ; Zhao, Bing ; Zhang, Jiujun</creatorcontrib><description>[Display omitted] High-energy–density lithium-rich Li1.2Ni0.13Co0.13Mn0.54O2 is regarded as one of the most promising cathode materials for lithium-ion batteries. However, its practical application is restricted by critical kinetics drawbacks and poor low-temperature electrochemical performances. In this research, Li1.2Ni0.13Co0.13Mn0.54O2 submicron particles coated by a Li7La3Zr2O12 (LLZO) layer and co-doped by La/Zr cations has been fabricated via a facile one-pot sol–gel technique and subsequent heat treatment. The coating LLZO layer with a few nanometers is able to build a rapid lithium-ion transport channel for adjacent particles and suppress severe side reactions between active material and the electrolyte. Moreover, large-radius La/Zr cations co-doping can broaden the diffusion paths of lithium ions, hinder the detrimental structural transformation, and improve the electrochemical structure stability of the cathode during repeated cycles. Owing to numerous merits from this multifunctional surface modification strategy, the modified Li1.2Ni0.13Co0.13Mn0.54O2 composite exhibits the significantly decreased interface impedance, enhanced Li+ diffusion kinetics and mitigated phase transformation, as well as excellent low-temperature electrochemical performance. It can contribute ultrahigh capacities of 173.8 mAh g−1 at −10 ℃ and 134.1 mAh g−1 at −20 ℃, respectively, displaying great application prospects of Li-rich cathode materials.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2022.01.176</identifier><identifier>PMID: 35124497</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Ionic conductive surface coating ; La/Zr co-doping ; Lithium-rich cathode ; Low-temperature performance ; One-pot method</subject><ispartof>Journal of colloid and interface science, 2022-06, Vol.615, p.1-9</ispartof><rights>2022 Elsevier Inc.</rights><rights>Copyright © 2022 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-1a0094601a3faa3519b1706ad71e9ae0f23cab85db7ec7ff3184aaa51f2212513</citedby><cites>FETCH-LOGICAL-c356t-1a0094601a3faa3519b1706ad71e9ae0f23cab85db7ec7ff3184aaa51f2212513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2022.01.176$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35124497$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Chao</creatorcontrib><creatorcontrib>Liu, Yiqian</creatorcontrib><creatorcontrib>Li, Wenrong</creatorcontrib><creatorcontrib>Liu, Xiaoyu</creatorcontrib><creatorcontrib>Xie, Jingwei</creatorcontrib><creatorcontrib>Jiang, Jinlong</creatorcontrib><creatorcontrib>Jiang, Yong</creatorcontrib><creatorcontrib>Zhao, Bing</creatorcontrib><creatorcontrib>Zhang, Jiujun</creatorcontrib><title>One-pot synthesis and multifunctional surface modification of lithium-rich manganese-based cathode for enhanced structural stability and low-temperature performance</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>[Display omitted] High-energy–density lithium-rich Li1.2Ni0.13Co0.13Mn0.54O2 is regarded as one of the most promising cathode materials for lithium-ion batteries. However, its practical application is restricted by critical kinetics drawbacks and poor low-temperature electrochemical performances. In this research, Li1.2Ni0.13Co0.13Mn0.54O2 submicron particles coated by a Li7La3Zr2O12 (LLZO) layer and co-doped by La/Zr cations has been fabricated via a facile one-pot sol–gel technique and subsequent heat treatment. The coating LLZO layer with a few nanometers is able to build a rapid lithium-ion transport channel for adjacent particles and suppress severe side reactions between active material and the electrolyte. Moreover, large-radius La/Zr cations co-doping can broaden the diffusion paths of lithium ions, hinder the detrimental structural transformation, and improve the electrochemical structure stability of the cathode during repeated cycles. Owing to numerous merits from this multifunctional surface modification strategy, the modified Li1.2Ni0.13Co0.13Mn0.54O2 composite exhibits the significantly decreased interface impedance, enhanced Li+ diffusion kinetics and mitigated phase transformation, as well as excellent low-temperature electrochemical performance. It can contribute ultrahigh capacities of 173.8 mAh g−1 at −10 ℃ and 134.1 mAh g−1 at −20 ℃, respectively, displaying great application prospects of Li-rich cathode materials.</description><subject>Ionic conductive surface coating</subject><subject>La/Zr co-doping</subject><subject>Lithium-rich cathode</subject><subject>Low-temperature performance</subject><subject>One-pot method</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kU-P1SAUxYnROM_RL-DCsHTTyqWv7Wvixkz8M8kks9E1uaUXy0uBJ1DN-z5-UKlvdDlhAbn8ziGHw9hrEDUI6N4d66O2qZZCylpADX33hO1ADG3Vg2iesp0QEqqhH_or9iKloxAAbTs8Z1dNC3K_H_od-33vqTqFzNPZ55mSTRz9xN26ZGtWr7MNHhee1mhQE3dhssZq3MY8GL7YPNvVVdHqmTv039FTomrERBMv2Bwm4iZETn5Gr8sw5bjqvMbNNONoi8P575NL-FVlcieKWK6Jl0MRuk31kj0zuCR69bBfs2-fPn69-VLd3X--vflwV-mm7XIFKMSw7wRgYxBLxmGEXnQ49UADkjCy0Tge2mnsSffGNHDYI2ILRkqQLTTX7O3F9xTDj5VSVs4mTctSUoU1KdmVJVvZHQoqL6iOIaVIRp2idRjPCoTa2lFHtbWjtnaUAFXaKaI3D_7r6Gj6L_lXRwHeXwAqKX9aiippS9u_2Ug6qynYx_z_AIY5pf4</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Shen, Chao</creator><creator>Liu, Yiqian</creator><creator>Li, Wenrong</creator><creator>Liu, Xiaoyu</creator><creator>Xie, Jingwei</creator><creator>Jiang, Jinlong</creator><creator>Jiang, Yong</creator><creator>Zhao, Bing</creator><creator>Zhang, Jiujun</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202206</creationdate><title>One-pot synthesis and multifunctional surface modification of lithium-rich manganese-based cathode for enhanced structural stability and low-temperature performance</title><author>Shen, Chao ; Liu, Yiqian ; Li, Wenrong ; Liu, Xiaoyu ; Xie, Jingwei ; Jiang, Jinlong ; Jiang, Yong ; Zhao, Bing ; Zhang, Jiujun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-1a0094601a3faa3519b1706ad71e9ae0f23cab85db7ec7ff3184aaa51f2212513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ionic conductive surface coating</topic><topic>La/Zr co-doping</topic><topic>Lithium-rich cathode</topic><topic>Low-temperature performance</topic><topic>One-pot method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Chao</creatorcontrib><creatorcontrib>Liu, Yiqian</creatorcontrib><creatorcontrib>Li, Wenrong</creatorcontrib><creatorcontrib>Liu, Xiaoyu</creatorcontrib><creatorcontrib>Xie, Jingwei</creatorcontrib><creatorcontrib>Jiang, Jinlong</creatorcontrib><creatorcontrib>Jiang, Yong</creatorcontrib><creatorcontrib>Zhao, Bing</creatorcontrib><creatorcontrib>Zhang, Jiujun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Chao</au><au>Liu, Yiqian</au><au>Li, Wenrong</au><au>Liu, Xiaoyu</au><au>Xie, Jingwei</au><au>Jiang, Jinlong</au><au>Jiang, Yong</au><au>Zhao, Bing</au><au>Zhang, Jiujun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-pot synthesis and multifunctional surface modification of lithium-rich manganese-based cathode for enhanced structural stability and low-temperature performance</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2022-06</date><risdate>2022</risdate><volume>615</volume><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>[Display omitted] High-energy–density lithium-rich Li1.2Ni0.13Co0.13Mn0.54O2 is regarded as one of the most promising cathode materials for lithium-ion batteries. However, its practical application is restricted by critical kinetics drawbacks and poor low-temperature electrochemical performances. In this research, Li1.2Ni0.13Co0.13Mn0.54O2 submicron particles coated by a Li7La3Zr2O12 (LLZO) layer and co-doped by La/Zr cations has been fabricated via a facile one-pot sol–gel technique and subsequent heat treatment. The coating LLZO layer with a few nanometers is able to build a rapid lithium-ion transport channel for adjacent particles and suppress severe side reactions between active material and the electrolyte. Moreover, large-radius La/Zr cations co-doping can broaden the diffusion paths of lithium ions, hinder the detrimental structural transformation, and improve the electrochemical structure stability of the cathode during repeated cycles. Owing to numerous merits from this multifunctional surface modification strategy, the modified Li1.2Ni0.13Co0.13Mn0.54O2 composite exhibits the significantly decreased interface impedance, enhanced Li+ diffusion kinetics and mitigated phase transformation, as well as excellent low-temperature electrochemical performance. It can contribute ultrahigh capacities of 173.8 mAh g−1 at −10 ℃ and 134.1 mAh g−1 at −20 ℃, respectively, displaying great application prospects of Li-rich cathode materials.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>35124497</pmid><doi>10.1016/j.jcis.2022.01.176</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2022-06, Vol.615, p.1-9
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_2626225268
source Elsevier ScienceDirect Journals
subjects Ionic conductive surface coating
La/Zr co-doping
Lithium-rich cathode
Low-temperature performance
One-pot method
title One-pot synthesis and multifunctional surface modification of lithium-rich manganese-based cathode for enhanced structural stability and low-temperature performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A16%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-pot%20synthesis%20and%20multifunctional%20surface%20modification%20of%20lithium-rich%20manganese-based%20cathode%20for%20enhanced%20structural%20stability%20and%20low-temperature%20performance&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Shen,%20Chao&rft.date=2022-06&rft.volume=615&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2022.01.176&rft_dat=%3Cproquest_cross%3E2626225268%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2626225268&rft_id=info:pmid/35124497&rft_els_id=S0021979722001965&rfr_iscdi=true