Artificial intelligence–enabled virtual screening of ultra-large chemical libraries with deep docking

With the recent explosion of chemical libraries beyond a billion molecules, more efficient virtual screening approaches are needed. The Deep Docking (DD) platform enables up to 100-fold acceleration of structure-based virtual screening by docking only a subset of a chemical library, iteratively sync...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature protocols 2022-03, Vol.17 (3), p.672-697
Hauptverfasser: Gentile, Francesco, Yaacoub, Jean Charle, Gleave, James, Fernandez, Michael, Ton, Anh-Tien, Ban, Fuqiang, Stern, Abraham, Cherkasov, Artem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 697
container_issue 3
container_start_page 672
container_title Nature protocols
container_volume 17
creator Gentile, Francesco
Yaacoub, Jean Charle
Gleave, James
Fernandez, Michael
Ton, Anh-Tien
Ban, Fuqiang
Stern, Abraham
Cherkasov, Artem
description With the recent explosion of chemical libraries beyond a billion molecules, more efficient virtual screening approaches are needed. The Deep Docking (DD) platform enables up to 100-fold acceleration of structure-based virtual screening by docking only a subset of a chemical library, iteratively synchronized with a ligand-based prediction of the remaining docking scores. This method results in hundreds- to thousands-fold virtual hit enrichment (without significant loss of potential drug candidates) and hence enables the screening of billion molecule–sized chemical libraries without using extraordinary computational resources. Herein, we present and discuss the generalized DD protocol that has been proven successful in various computer-aided drug discovery (CADD) campaigns and can be applied in conjunction with any conventional docking program. The protocol encompasses eight consecutive stages: molecular library preparation, receptor preparation, random sampling of a library, ligand preparation, molecular docking, model training, model inference and the residual docking. The standard DD workflow enables iterative application of stages 3–7 with continuous augmentation of the training set, and the number of such iterations can be adjusted by the user. A predefined recall value allows for control of the percentage of top-scoring molecules that are retained by DD and can be adjusted to control the library size reduction. The procedure takes 1–2 weeks (depending on the available resources) and can be completely automated on computing clusters managed by job schedulers. This open-source protocol, at https://github.com/jamesgleave/DD_protocol , can be readily deployed by CADD researchers and can significantly accelerate the effective exploration of ultra-large portions of a chemical space. Screening chemical databases by computational docking is prohibitively time consuming when the databases are very large. Deep docking is a deep-learning approach aimed at reducing the number of compounds that need to be docked.
doi_str_mv 10.1038/s41596-021-00659-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2626016781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2637832562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-7bf34f23332c37859df040e1ff7874359f2666871b048c170840c2ec7f3c15083</originalsourceid><addsrcrecordid>eNp9kblOxTAQRS0EYv8BChSJhsbg3U6JEJuERAO1lTjjYMhLHnYCouMf-EO-BMNjkSiobHnOvTPji9AOJQeUcHOYBJWlwoRRTIiSJWZLaJ1qSTDTZbn8eReYUVOuoY2U7ggRmiu9ita4pPlZinXUHsUx-OBC1RWhH6HrQgu9g7eXV-iruoOmeAxxnHI5uQjQh74tBl9M3Rgr3FWxhcLdwiy4THShjlUMkIqnMN4WDcC8aAZ3nzVbaMVXXYLtr3MT3ZyeXB-f48urs4vjo0vsBC1HrGvPhWecc-a4NrJsPBEEqPfaaMFl6ZlSymhaE2Ec1cQI4hg47bmjkhi-ifYXvvM4PEyQRjsLyeW1qh6GKVmmmCJUaUMzuvcHvRum2OfpMpWbcyYVyxRbUC4OKUXwdh7DrIrPlhL7EYNdxGBzDPYzBvsh2v2ynuoZND-S73_PAF8AKZf6FuJv739s3wG-rpM-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637832562</pqid></control><display><type>article</type><title>Artificial intelligence–enabled virtual screening of ultra-large chemical libraries with deep docking</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Gentile, Francesco ; Yaacoub, Jean Charle ; Gleave, James ; Fernandez, Michael ; Ton, Anh-Tien ; Ban, Fuqiang ; Stern, Abraham ; Cherkasov, Artem</creator><creatorcontrib>Gentile, Francesco ; Yaacoub, Jean Charle ; Gleave, James ; Fernandez, Michael ; Ton, Anh-Tien ; Ban, Fuqiang ; Stern, Abraham ; Cherkasov, Artem</creatorcontrib><description>With the recent explosion of chemical libraries beyond a billion molecules, more efficient virtual screening approaches are needed. The Deep Docking (DD) platform enables up to 100-fold acceleration of structure-based virtual screening by docking only a subset of a chemical library, iteratively synchronized with a ligand-based prediction of the remaining docking scores. This method results in hundreds- to thousands-fold virtual hit enrichment (without significant loss of potential drug candidates) and hence enables the screening of billion molecule–sized chemical libraries without using extraordinary computational resources. Herein, we present and discuss the generalized DD protocol that has been proven successful in various computer-aided drug discovery (CADD) campaigns and can be applied in conjunction with any conventional docking program. The protocol encompasses eight consecutive stages: molecular library preparation, receptor preparation, random sampling of a library, ligand preparation, molecular docking, model training, model inference and the residual docking. The standard DD workflow enables iterative application of stages 3–7 with continuous augmentation of the training set, and the number of such iterations can be adjusted by the user. A predefined recall value allows for control of the percentage of top-scoring molecules that are retained by DD and can be adjusted to control the library size reduction. The procedure takes 1–2 weeks (depending on the available resources) and can be completely automated on computing clusters managed by job schedulers. This open-source protocol, at https://github.com/jamesgleave/DD_protocol , can be readily deployed by CADD researchers and can significantly accelerate the effective exploration of ultra-large portions of a chemical space. Screening chemical databases by computational docking is prohibitively time consuming when the databases are very large. Deep docking is a deep-learning approach aimed at reducing the number of compounds that need to be docked.</description><identifier>ISSN: 1754-2189</identifier><identifier>EISSN: 1750-2799</identifier><identifier>DOI: 10.1038/s41596-021-00659-2</identifier><identifier>PMID: 35121854</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/2398 ; 631/154/1435/2418 ; 631/92/606 ; Analytical Chemistry ; Artificial Intelligence ; Biological Techniques ; Biomedical and Life Sciences ; Computational Biology/Bioinformatics ; Computer applications ; Drug development ; Drug Discovery - methods ; Iterative methods ; Libraries ; Life Sciences ; Ligands ; Microarrays ; Molecular docking ; Molecular Docking Simulation ; Organic Chemistry ; Protocol ; Random sampling ; Screening ; Size reduction ; Small Molecule Libraries ; Statistical sampling ; Training ; Workflow</subject><ispartof>Nature protocols, 2022-03, Vol.17 (3), p.672-697</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022 corrected publication 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group Mar 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-7bf34f23332c37859df040e1ff7874359f2666871b048c170840c2ec7f3c15083</citedby><cites>FETCH-LOGICAL-c419t-7bf34f23332c37859df040e1ff7874359f2666871b048c170840c2ec7f3c15083</cites><orcidid>0000-0001-8299-1976 ; 0000-0001-7418-6563</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41596-021-00659-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41596-021-00659-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35121854$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gentile, Francesco</creatorcontrib><creatorcontrib>Yaacoub, Jean Charle</creatorcontrib><creatorcontrib>Gleave, James</creatorcontrib><creatorcontrib>Fernandez, Michael</creatorcontrib><creatorcontrib>Ton, Anh-Tien</creatorcontrib><creatorcontrib>Ban, Fuqiang</creatorcontrib><creatorcontrib>Stern, Abraham</creatorcontrib><creatorcontrib>Cherkasov, Artem</creatorcontrib><title>Artificial intelligence–enabled virtual screening of ultra-large chemical libraries with deep docking</title><title>Nature protocols</title><addtitle>Nat Protoc</addtitle><addtitle>Nat Protoc</addtitle><description>With the recent explosion of chemical libraries beyond a billion molecules, more efficient virtual screening approaches are needed. The Deep Docking (DD) platform enables up to 100-fold acceleration of structure-based virtual screening by docking only a subset of a chemical library, iteratively synchronized with a ligand-based prediction of the remaining docking scores. This method results in hundreds- to thousands-fold virtual hit enrichment (without significant loss of potential drug candidates) and hence enables the screening of billion molecule–sized chemical libraries without using extraordinary computational resources. Herein, we present and discuss the generalized DD protocol that has been proven successful in various computer-aided drug discovery (CADD) campaigns and can be applied in conjunction with any conventional docking program. The protocol encompasses eight consecutive stages: molecular library preparation, receptor preparation, random sampling of a library, ligand preparation, molecular docking, model training, model inference and the residual docking. The standard DD workflow enables iterative application of stages 3–7 with continuous augmentation of the training set, and the number of such iterations can be adjusted by the user. A predefined recall value allows for control of the percentage of top-scoring molecules that are retained by DD and can be adjusted to control the library size reduction. The procedure takes 1–2 weeks (depending on the available resources) and can be completely automated on computing clusters managed by job schedulers. This open-source protocol, at https://github.com/jamesgleave/DD_protocol , can be readily deployed by CADD researchers and can significantly accelerate the effective exploration of ultra-large portions of a chemical space. Screening chemical databases by computational docking is prohibitively time consuming when the databases are very large. Deep docking is a deep-learning approach aimed at reducing the number of compounds that need to be docked.</description><subject>631/114/2398</subject><subject>631/154/1435/2418</subject><subject>631/92/606</subject><subject>Analytical Chemistry</subject><subject>Artificial Intelligence</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computer applications</subject><subject>Drug development</subject><subject>Drug Discovery - methods</subject><subject>Iterative methods</subject><subject>Libraries</subject><subject>Life Sciences</subject><subject>Ligands</subject><subject>Microarrays</subject><subject>Molecular docking</subject><subject>Molecular Docking Simulation</subject><subject>Organic Chemistry</subject><subject>Protocol</subject><subject>Random sampling</subject><subject>Screening</subject><subject>Size reduction</subject><subject>Small Molecule Libraries</subject><subject>Statistical sampling</subject><subject>Training</subject><subject>Workflow</subject><issn>1754-2189</issn><issn>1750-2799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kblOxTAQRS0EYv8BChSJhsbg3U6JEJuERAO1lTjjYMhLHnYCouMf-EO-BMNjkSiobHnOvTPji9AOJQeUcHOYBJWlwoRRTIiSJWZLaJ1qSTDTZbn8eReYUVOuoY2U7ggRmiu9ita4pPlZinXUHsUx-OBC1RWhH6HrQgu9g7eXV-iruoOmeAxxnHI5uQjQh74tBl9M3Rgr3FWxhcLdwiy4THShjlUMkIqnMN4WDcC8aAZ3nzVbaMVXXYLtr3MT3ZyeXB-f48urs4vjo0vsBC1HrGvPhWecc-a4NrJsPBEEqPfaaMFl6ZlSymhaE2Ec1cQI4hg47bmjkhi-ifYXvvM4PEyQRjsLyeW1qh6GKVmmmCJUaUMzuvcHvRum2OfpMpWbcyYVyxRbUC4OKUXwdh7DrIrPlhL7EYNdxGBzDPYzBvsh2v2ynuoZND-S73_PAF8AKZf6FuJv739s3wG-rpM-</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Gentile, Francesco</creator><creator>Yaacoub, Jean Charle</creator><creator>Gleave, James</creator><creator>Fernandez, Michael</creator><creator>Ton, Anh-Tien</creator><creator>Ban, Fuqiang</creator><creator>Stern, Abraham</creator><creator>Cherkasov, Artem</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8299-1976</orcidid><orcidid>https://orcid.org/0000-0001-7418-6563</orcidid></search><sort><creationdate>20220301</creationdate><title>Artificial intelligence–enabled virtual screening of ultra-large chemical libraries with deep docking</title><author>Gentile, Francesco ; Yaacoub, Jean Charle ; Gleave, James ; Fernandez, Michael ; Ton, Anh-Tien ; Ban, Fuqiang ; Stern, Abraham ; Cherkasov, Artem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-7bf34f23332c37859df040e1ff7874359f2666871b048c170840c2ec7f3c15083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/114/2398</topic><topic>631/154/1435/2418</topic><topic>631/92/606</topic><topic>Analytical Chemistry</topic><topic>Artificial Intelligence</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computer applications</topic><topic>Drug development</topic><topic>Drug Discovery - methods</topic><topic>Iterative methods</topic><topic>Libraries</topic><topic>Life Sciences</topic><topic>Ligands</topic><topic>Microarrays</topic><topic>Molecular docking</topic><topic>Molecular Docking Simulation</topic><topic>Organic Chemistry</topic><topic>Protocol</topic><topic>Random sampling</topic><topic>Screening</topic><topic>Size reduction</topic><topic>Small Molecule Libraries</topic><topic>Statistical sampling</topic><topic>Training</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gentile, Francesco</creatorcontrib><creatorcontrib>Yaacoub, Jean Charle</creatorcontrib><creatorcontrib>Gleave, James</creatorcontrib><creatorcontrib>Fernandez, Michael</creatorcontrib><creatorcontrib>Ton, Anh-Tien</creatorcontrib><creatorcontrib>Ban, Fuqiang</creatorcontrib><creatorcontrib>Stern, Abraham</creatorcontrib><creatorcontrib>Cherkasov, Artem</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature protocols</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gentile, Francesco</au><au>Yaacoub, Jean Charle</au><au>Gleave, James</au><au>Fernandez, Michael</au><au>Ton, Anh-Tien</au><au>Ban, Fuqiang</au><au>Stern, Abraham</au><au>Cherkasov, Artem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial intelligence–enabled virtual screening of ultra-large chemical libraries with deep docking</atitle><jtitle>Nature protocols</jtitle><stitle>Nat Protoc</stitle><addtitle>Nat Protoc</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>17</volume><issue>3</issue><spage>672</spage><epage>697</epage><pages>672-697</pages><issn>1754-2189</issn><eissn>1750-2799</eissn><abstract>With the recent explosion of chemical libraries beyond a billion molecules, more efficient virtual screening approaches are needed. The Deep Docking (DD) platform enables up to 100-fold acceleration of structure-based virtual screening by docking only a subset of a chemical library, iteratively synchronized with a ligand-based prediction of the remaining docking scores. This method results in hundreds- to thousands-fold virtual hit enrichment (without significant loss of potential drug candidates) and hence enables the screening of billion molecule–sized chemical libraries without using extraordinary computational resources. Herein, we present and discuss the generalized DD protocol that has been proven successful in various computer-aided drug discovery (CADD) campaigns and can be applied in conjunction with any conventional docking program. The protocol encompasses eight consecutive stages: molecular library preparation, receptor preparation, random sampling of a library, ligand preparation, molecular docking, model training, model inference and the residual docking. The standard DD workflow enables iterative application of stages 3–7 with continuous augmentation of the training set, and the number of such iterations can be adjusted by the user. A predefined recall value allows for control of the percentage of top-scoring molecules that are retained by DD and can be adjusted to control the library size reduction. The procedure takes 1–2 weeks (depending on the available resources) and can be completely automated on computing clusters managed by job schedulers. This open-source protocol, at https://github.com/jamesgleave/DD_protocol , can be readily deployed by CADD researchers and can significantly accelerate the effective exploration of ultra-large portions of a chemical space. Screening chemical databases by computational docking is prohibitively time consuming when the databases are very large. Deep docking is a deep-learning approach aimed at reducing the number of compounds that need to be docked.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35121854</pmid><doi>10.1038/s41596-021-00659-2</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-8299-1976</orcidid><orcidid>https://orcid.org/0000-0001-7418-6563</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1754-2189
ispartof Nature protocols, 2022-03, Vol.17 (3), p.672-697
issn 1754-2189
1750-2799
language eng
recordid cdi_proquest_miscellaneous_2626016781
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects 631/114/2398
631/154/1435/2418
631/92/606
Analytical Chemistry
Artificial Intelligence
Biological Techniques
Biomedical and Life Sciences
Computational Biology/Bioinformatics
Computer applications
Drug development
Drug Discovery - methods
Iterative methods
Libraries
Life Sciences
Ligands
Microarrays
Molecular docking
Molecular Docking Simulation
Organic Chemistry
Protocol
Random sampling
Screening
Size reduction
Small Molecule Libraries
Statistical sampling
Training
Workflow
title Artificial intelligence–enabled virtual screening of ultra-large chemical libraries with deep docking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A33%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20intelligence%E2%80%93enabled%20virtual%20screening%20of%20ultra-large%20chemical%20libraries%20with%20deep%20docking&rft.jtitle=Nature%20protocols&rft.au=Gentile,%20Francesco&rft.date=2022-03-01&rft.volume=17&rft.issue=3&rft.spage=672&rft.epage=697&rft.pages=672-697&rft.issn=1754-2189&rft.eissn=1750-2799&rft_id=info:doi/10.1038/s41596-021-00659-2&rft_dat=%3Cproquest_cross%3E2637832562%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637832562&rft_id=info:pmid/35121854&rfr_iscdi=true