Biodegradable Bismuth‐Based Nano‐Heterojunction for Enhanced Sonodynamic Oncotherapy through Charge Separation Engineering
Sonodynamic therapy is a noninvasive treatment method that generates reactive oxygen species (ROS) triggered by ultrasound, to achieve oxidative damage to tumors. However, methods are required to improve the efficiency of ROS generation and achieve continuous oxidative damage. A ternary heterojuncti...
Gespeichert in:
Veröffentlicht in: | Advanced healthcare materials 2022-06, Vol.11 (11), p.e2102503-n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 11 |
container_start_page | e2102503 |
container_title | Advanced healthcare materials |
container_volume | 11 |
creator | Song, Kang Du, Jun Wang, Xiang Zheng, Lulu Ouyang, Ruizhuo Li, Yuhao Miao, Yuqing Zhang, Dawei |
description | Sonodynamic therapy is a noninvasive treatment method that generates reactive oxygen species (ROS) triggered by ultrasound, to achieve oxidative damage to tumors. However, methods are required to improve the efficiency of ROS generation and achieve continuous oxidative damage. A ternary heterojunction sonosensitizer composed of Bi@BiO2−x@Bi2S3‐PEG (BOS) to achieve thermal injury‐assisted continuous sonodynamic therapy for tumors is prepared. The oxygen vacancy in BOS can capture hot electrons and promotes the separation of hot carriers on the bismuth surface. The local electric field induced by localized surface plasmon resonance also contributes to the rapid transfer of electrons. Therefore, BOS not only possesses the functions of each component but also exhibits higher catalytic activity to generate ROS. Meanwhile, BOS continuously consumes glutathione, which is conducive to its biodegradation and achieves continuous oxidative stress injury. In addition, the photothermal conversion of BOS under near‐infrared irradiation helps to achieve thermal tumor damage and further relieves tumor hypoxia, thus amplifying the sonodynamic therapeutic efficacy. This process not only provides a strategy for thermal damage to amplify the efficacy of sonodynamic therapy, but also expands the application of bismuth‐based heterojunction nanomaterials as sonosensitizers in sonodynamic therapy.
Bismuth‐based ternary nano‐heterojunction semiconductor with biodegradable property and the characteristics of oxygen defects and the localized surface plasmon resonance are presented, which can enhance charge separation and regulate the generation of reactive oxygen species, thereby achieving the photothermal‐enhanced sonodynamic therapy of hypoxic tumors. |
doi_str_mv | 10.1002/adhm.202102503 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2626004377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2626004377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-eeeccff6423babdd6e62ef8eacefadb9e90cd83dd97df5e6d71b575a954b53123</originalsourceid><addsrcrecordid>eNqF0U9v0zAYBnALgdi07coRReLCpZ3_xE5zXEuhSBs7DM7RG_tN4iqxi50I9TLtI_AZ-SR4dCsSF3yxLf3eR6_0EPKG0TmjlF-C6YY5p5xRLql4QU45K_mMK1m-PL5zekIuYtzSdJRkasFekxMhGctpIU7J_dJ6g20AA3WP2dLGYRq7Xw8_lxDRZF_A-fTZ4IjBbyenR-td1viQrV0HTidy5503eweD1dmt037sMMBun41d8FPbZasOQovZHe4gwJ_xtWutQwzWtefkVQN9xIun-4x8-7j-utrMrm8_fV5dXc-0KISYIaLWTaNyLmqojVGoODYLBI0NmLrEkmqzEMaUhWkkKlOwWhYSSpnXUjAuzsj7Q-4u-O8TxrEabNTY9-DQT7HiiitKc1EUib77h279FFzaLqlCLJgQnCY1PygdfIwBm2oX7ABhXzFaPZZTPZZTHctJA2-fYqd6QHPkz1UkUB7AD9vj_j9x1dWHzc3f8N9OdaA3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2673813320</pqid></control><display><type>article</type><title>Biodegradable Bismuth‐Based Nano‐Heterojunction for Enhanced Sonodynamic Oncotherapy through Charge Separation Engineering</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Song, Kang ; Du, Jun ; Wang, Xiang ; Zheng, Lulu ; Ouyang, Ruizhuo ; Li, Yuhao ; Miao, Yuqing ; Zhang, Dawei</creator><creatorcontrib>Song, Kang ; Du, Jun ; Wang, Xiang ; Zheng, Lulu ; Ouyang, Ruizhuo ; Li, Yuhao ; Miao, Yuqing ; Zhang, Dawei</creatorcontrib><description>Sonodynamic therapy is a noninvasive treatment method that generates reactive oxygen species (ROS) triggered by ultrasound, to achieve oxidative damage to tumors. However, methods are required to improve the efficiency of ROS generation and achieve continuous oxidative damage. A ternary heterojunction sonosensitizer composed of Bi@BiO2−x@Bi2S3‐PEG (BOS) to achieve thermal injury‐assisted continuous sonodynamic therapy for tumors is prepared. The oxygen vacancy in BOS can capture hot electrons and promotes the separation of hot carriers on the bismuth surface. The local electric field induced by localized surface plasmon resonance also contributes to the rapid transfer of electrons. Therefore, BOS not only possesses the functions of each component but also exhibits higher catalytic activity to generate ROS. Meanwhile, BOS continuously consumes glutathione, which is conducive to its biodegradation and achieves continuous oxidative stress injury. In addition, the photothermal conversion of BOS under near‐infrared irradiation helps to achieve thermal tumor damage and further relieves tumor hypoxia, thus amplifying the sonodynamic therapeutic efficacy. This process not only provides a strategy for thermal damage to amplify the efficacy of sonodynamic therapy, but also expands the application of bismuth‐based heterojunction nanomaterials as sonosensitizers in sonodynamic therapy.
Bismuth‐based ternary nano‐heterojunction semiconductor with biodegradable property and the characteristics of oxygen defects and the localized surface plasmon resonance are presented, which can enhance charge separation and regulate the generation of reactive oxygen species, thereby achieving the photothermal‐enhanced sonodynamic therapy of hypoxic tumors.</description><identifier>ISSN: 2192-2640</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202102503</identifier><identifier>PMID: 35114073</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Amplification ; Biodegradability ; Biodegradation ; Bismuth ; Catalytic activity ; Cell Line, Tumor ; charge separation ; Electric fields ; Glutathione ; glutathione depletion ; heterojunction ; Heterojunctions ; Hot electrons ; Humans ; Hypoxia ; I.R. radiation ; Nanomaterials ; Nanotechnology ; Neoplasms - drug therapy ; Oxidative stress ; Oxygen ; Photothermal conversion ; Radiation damage ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Separation ; sonodynamic therapy ; Surface plasmon resonance ; synergistic therapy ; Therapy ; Thermal injury ; Tumor Hypoxia ; Tumors ; Ultrasonic Therapy</subject><ispartof>Advanced healthcare materials, 2022-06, Vol.11 (11), p.e2102503-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-eeeccff6423babdd6e62ef8eacefadb9e90cd83dd97df5e6d71b575a954b53123</citedby><cites>FETCH-LOGICAL-c3733-eeeccff6423babdd6e62ef8eacefadb9e90cd83dd97df5e6d71b575a954b53123</cites><orcidid>0000-0001-7146-8645</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadhm.202102503$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadhm.202102503$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35114073$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Kang</creatorcontrib><creatorcontrib>Du, Jun</creatorcontrib><creatorcontrib>Wang, Xiang</creatorcontrib><creatorcontrib>Zheng, Lulu</creatorcontrib><creatorcontrib>Ouyang, Ruizhuo</creatorcontrib><creatorcontrib>Li, Yuhao</creatorcontrib><creatorcontrib>Miao, Yuqing</creatorcontrib><creatorcontrib>Zhang, Dawei</creatorcontrib><title>Biodegradable Bismuth‐Based Nano‐Heterojunction for Enhanced Sonodynamic Oncotherapy through Charge Separation Engineering</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>Sonodynamic therapy is a noninvasive treatment method that generates reactive oxygen species (ROS) triggered by ultrasound, to achieve oxidative damage to tumors. However, methods are required to improve the efficiency of ROS generation and achieve continuous oxidative damage. A ternary heterojunction sonosensitizer composed of Bi@BiO2−x@Bi2S3‐PEG (BOS) to achieve thermal injury‐assisted continuous sonodynamic therapy for tumors is prepared. The oxygen vacancy in BOS can capture hot electrons and promotes the separation of hot carriers on the bismuth surface. The local electric field induced by localized surface plasmon resonance also contributes to the rapid transfer of electrons. Therefore, BOS not only possesses the functions of each component but also exhibits higher catalytic activity to generate ROS. Meanwhile, BOS continuously consumes glutathione, which is conducive to its biodegradation and achieves continuous oxidative stress injury. In addition, the photothermal conversion of BOS under near‐infrared irradiation helps to achieve thermal tumor damage and further relieves tumor hypoxia, thus amplifying the sonodynamic therapeutic efficacy. This process not only provides a strategy for thermal damage to amplify the efficacy of sonodynamic therapy, but also expands the application of bismuth‐based heterojunction nanomaterials as sonosensitizers in sonodynamic therapy.
Bismuth‐based ternary nano‐heterojunction semiconductor with biodegradable property and the characteristics of oxygen defects and the localized surface plasmon resonance are presented, which can enhance charge separation and regulate the generation of reactive oxygen species, thereby achieving the photothermal‐enhanced sonodynamic therapy of hypoxic tumors.</description><subject>Amplification</subject><subject>Biodegradability</subject><subject>Biodegradation</subject><subject>Bismuth</subject><subject>Catalytic activity</subject><subject>Cell Line, Tumor</subject><subject>charge separation</subject><subject>Electric fields</subject><subject>Glutathione</subject><subject>glutathione depletion</subject><subject>heterojunction</subject><subject>Heterojunctions</subject><subject>Hot electrons</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>I.R. radiation</subject><subject>Nanomaterials</subject><subject>Nanotechnology</subject><subject>Neoplasms - drug therapy</subject><subject>Oxidative stress</subject><subject>Oxygen</subject><subject>Photothermal conversion</subject><subject>Radiation damage</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Separation</subject><subject>sonodynamic therapy</subject><subject>Surface plasmon resonance</subject><subject>synergistic therapy</subject><subject>Therapy</subject><subject>Thermal injury</subject><subject>Tumor Hypoxia</subject><subject>Tumors</subject><subject>Ultrasonic Therapy</subject><issn>2192-2640</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U9v0zAYBnALgdi07coRReLCpZ3_xE5zXEuhSBs7DM7RG_tN4iqxi50I9TLtI_AZ-SR4dCsSF3yxLf3eR6_0EPKG0TmjlF-C6YY5p5xRLql4QU45K_mMK1m-PL5zekIuYtzSdJRkasFekxMhGctpIU7J_dJ6g20AA3WP2dLGYRq7Xw8_lxDRZF_A-fTZ4IjBbyenR-td1viQrV0HTidy5503eweD1dmt037sMMBun41d8FPbZasOQovZHe4gwJ_xtWutQwzWtefkVQN9xIun-4x8-7j-utrMrm8_fV5dXc-0KISYIaLWTaNyLmqojVGoODYLBI0NmLrEkmqzEMaUhWkkKlOwWhYSSpnXUjAuzsj7Q-4u-O8TxrEabNTY9-DQT7HiiitKc1EUib77h279FFzaLqlCLJgQnCY1PygdfIwBm2oX7ABhXzFaPZZTPZZTHctJA2-fYqd6QHPkz1UkUB7AD9vj_j9x1dWHzc3f8N9OdaA3</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Song, Kang</creator><creator>Du, Jun</creator><creator>Wang, Xiang</creator><creator>Zheng, Lulu</creator><creator>Ouyang, Ruizhuo</creator><creator>Li, Yuhao</creator><creator>Miao, Yuqing</creator><creator>Zhang, Dawei</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7146-8645</orcidid></search><sort><creationdate>202206</creationdate><title>Biodegradable Bismuth‐Based Nano‐Heterojunction for Enhanced Sonodynamic Oncotherapy through Charge Separation Engineering</title><author>Song, Kang ; Du, Jun ; Wang, Xiang ; Zheng, Lulu ; Ouyang, Ruizhuo ; Li, Yuhao ; Miao, Yuqing ; Zhang, Dawei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-eeeccff6423babdd6e62ef8eacefadb9e90cd83dd97df5e6d71b575a954b53123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amplification</topic><topic>Biodegradability</topic><topic>Biodegradation</topic><topic>Bismuth</topic><topic>Catalytic activity</topic><topic>Cell Line, Tumor</topic><topic>charge separation</topic><topic>Electric fields</topic><topic>Glutathione</topic><topic>glutathione depletion</topic><topic>heterojunction</topic><topic>Heterojunctions</topic><topic>Hot electrons</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>I.R. radiation</topic><topic>Nanomaterials</topic><topic>Nanotechnology</topic><topic>Neoplasms - drug therapy</topic><topic>Oxidative stress</topic><topic>Oxygen</topic><topic>Photothermal conversion</topic><topic>Radiation damage</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Separation</topic><topic>sonodynamic therapy</topic><topic>Surface plasmon resonance</topic><topic>synergistic therapy</topic><topic>Therapy</topic><topic>Thermal injury</topic><topic>Tumor Hypoxia</topic><topic>Tumors</topic><topic>Ultrasonic Therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Kang</creatorcontrib><creatorcontrib>Du, Jun</creatorcontrib><creatorcontrib>Wang, Xiang</creatorcontrib><creatorcontrib>Zheng, Lulu</creatorcontrib><creatorcontrib>Ouyang, Ruizhuo</creatorcontrib><creatorcontrib>Li, Yuhao</creatorcontrib><creatorcontrib>Miao, Yuqing</creatorcontrib><creatorcontrib>Zhang, Dawei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Kang</au><au>Du, Jun</au><au>Wang, Xiang</au><au>Zheng, Lulu</au><au>Ouyang, Ruizhuo</au><au>Li, Yuhao</au><au>Miao, Yuqing</au><au>Zhang, Dawei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biodegradable Bismuth‐Based Nano‐Heterojunction for Enhanced Sonodynamic Oncotherapy through Charge Separation Engineering</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2022-06</date><risdate>2022</risdate><volume>11</volume><issue>11</issue><spage>e2102503</spage><epage>n/a</epage><pages>e2102503-n/a</pages><issn>2192-2640</issn><eissn>2192-2659</eissn><abstract>Sonodynamic therapy is a noninvasive treatment method that generates reactive oxygen species (ROS) triggered by ultrasound, to achieve oxidative damage to tumors. However, methods are required to improve the efficiency of ROS generation and achieve continuous oxidative damage. A ternary heterojunction sonosensitizer composed of Bi@BiO2−x@Bi2S3‐PEG (BOS) to achieve thermal injury‐assisted continuous sonodynamic therapy for tumors is prepared. The oxygen vacancy in BOS can capture hot electrons and promotes the separation of hot carriers on the bismuth surface. The local electric field induced by localized surface plasmon resonance also contributes to the rapid transfer of electrons. Therefore, BOS not only possesses the functions of each component but also exhibits higher catalytic activity to generate ROS. Meanwhile, BOS continuously consumes glutathione, which is conducive to its biodegradation and achieves continuous oxidative stress injury. In addition, the photothermal conversion of BOS under near‐infrared irradiation helps to achieve thermal tumor damage and further relieves tumor hypoxia, thus amplifying the sonodynamic therapeutic efficacy. This process not only provides a strategy for thermal damage to amplify the efficacy of sonodynamic therapy, but also expands the application of bismuth‐based heterojunction nanomaterials as sonosensitizers in sonodynamic therapy.
Bismuth‐based ternary nano‐heterojunction semiconductor with biodegradable property and the characteristics of oxygen defects and the localized surface plasmon resonance are presented, which can enhance charge separation and regulate the generation of reactive oxygen species, thereby achieving the photothermal‐enhanced sonodynamic therapy of hypoxic tumors.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35114073</pmid><doi>10.1002/adhm.202102503</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7146-8645</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-2640 |
ispartof | Advanced healthcare materials, 2022-06, Vol.11 (11), p.e2102503-n/a |
issn | 2192-2640 2192-2659 |
language | eng |
recordid | cdi_proquest_miscellaneous_2626004377 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Amplification Biodegradability Biodegradation Bismuth Catalytic activity Cell Line, Tumor charge separation Electric fields Glutathione glutathione depletion heterojunction Heterojunctions Hot electrons Humans Hypoxia I.R. radiation Nanomaterials Nanotechnology Neoplasms - drug therapy Oxidative stress Oxygen Photothermal conversion Radiation damage Reactive oxygen species Reactive Oxygen Species - metabolism Separation sonodynamic therapy Surface plasmon resonance synergistic therapy Therapy Thermal injury Tumor Hypoxia Tumors Ultrasonic Therapy |
title | Biodegradable Bismuth‐Based Nano‐Heterojunction for Enhanced Sonodynamic Oncotherapy through Charge Separation Engineering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A58%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biodegradable%20Bismuth%E2%80%90Based%20Nano%E2%80%90Heterojunction%20for%20Enhanced%20Sonodynamic%20Oncotherapy%20through%20Charge%20Separation%20Engineering&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Song,%20Kang&rft.date=2022-06&rft.volume=11&rft.issue=11&rft.spage=e2102503&rft.epage=n/a&rft.pages=e2102503-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202102503&rft_dat=%3Cproquest_cross%3E2626004377%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2673813320&rft_id=info:pmid/35114073&rfr_iscdi=true |