Operational Cloud-Motion Winds from Meteosat Infrared Images
The displacements of clouds in successive satellite images reflects the atmospheric circulation at various scales. The main application of the satellite-derived cloud-motion vectors is their use as winds in the data analysis for numerical weather prediction. At low latitudes in particular they const...
Gespeichert in:
Veröffentlicht in: | Journal of applied meteorology (1988) 1993-07, Vol.32 (7), p.1206-1225 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1225 |
---|---|
container_issue | 7 |
container_start_page | 1206 |
container_title | Journal of applied meteorology (1988) |
container_volume | 32 |
creator | Schmetz, Johannes Holmlund, Kenneth Hoffman, Joel Strauss, Bernard Mason, Brian Gaertner, Volker Koch, Arno Van De Berg, Leo |
description | The displacements of clouds in successive satellite images reflects the atmospheric circulation at various scales. The main application of the satellite-derived cloud-motion vectors is their use as winds in the data analysis for numerical weather prediction. At low latitudes in particular they constitute an indispensible data source for numerical weather prediction. This paper describes the operational method of deriving cloud-motion winds (CMW) from the IR images (10.5-12.5 μm) of the European geostationary Meteosat satellites. The method is automatic, that is, the cloud tracking uses cross correlation and the height assignment is based on satellite observed brightness temperature and a forecast temperature profile. Semitransparent clouds undergo a height correction based on radiative forward calculations and simultaneous radiance observations in both the IR and water vapor (5.7-7.1 μm) channel. Cloud-motion winds are subject to various quality checks that include manual quality control as the last step. Typically about 3000 wind vectors are produced per day over four production cycles. This paper documents algorithm changes and improvements made to the operational CMWs over the last five years. The improvements are shown by long-term comparisons with both collocated radiosondes and the first guess of the forecast model of the European Centre for Medium-Range Weather Forecasts. In particular, the height assignment of a wind vector and radiance filtering techniques preceding the cloud tracking have ameliorated the errors in Meteosat winds. The slow speed bias of high-level CMWs ( |
doi_str_mv | 10.1175/1520-0450(1993)032<1206:ocmwfm>2.0.co;2 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_26256874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44713931</jstor_id><sourcerecordid>44713931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-37d829be360cf56f3fd8c48cc6c0460afdaefe3e0fa2370409cf3e04717e77cc3</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKc_QeiFiF50O_lo0uoQpLg52NiNsssQ00Q62mYmHeK_t2VjXnp1eDkP7-E8CI0xjDAWyRgnBGJgCdzhLKP3QMkEE-APTtfftn4iIxhp90hO0OBInqIBpBmLU8HpOboIYQMAmDIxQJPV1njVlq5RVZRXblfES9fHaF02RYisd3W0NK1xQbXRvLFeeVNE81p9mnCJzqyqgrk6zCF6n7685a_xYjWb58-LWDOO25iKIiXZh6EctE24pbZINUu15hoYB2ULZayhBqwiVACDTNsuMYGFEUJrOkS3-96td187E1pZl0GbqlKNcbsgCScJTwX7F8QpwVkKogNne1B7F4I3Vm59WSv_IzHIXrPs5clenuw1y06z7DXLVb5cT5eSSJD5SpKu6eZwUgWtqs5Po8twrGPdNUyyDrveY5vQOv-37p6kGcX0F73Hiqk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18219807</pqid></control><display><type>article</type><title>Operational Cloud-Motion Winds from Meteosat Infrared Images</title><source>JSTOR</source><creator>Schmetz, Johannes ; Holmlund, Kenneth ; Hoffman, Joel ; Strauss, Bernard ; Mason, Brian ; Gaertner, Volker ; Koch, Arno ; Van De Berg, Leo</creator><creatorcontrib>Schmetz, Johannes ; Holmlund, Kenneth ; Hoffman, Joel ; Strauss, Bernard ; Mason, Brian ; Gaertner, Volker ; Koch, Arno ; Van De Berg, Leo</creatorcontrib><description>The displacements of clouds in successive satellite images reflects the atmospheric circulation at various scales. The main application of the satellite-derived cloud-motion vectors is their use as winds in the data analysis for numerical weather prediction. At low latitudes in particular they constitute an indispensible data source for numerical weather prediction. This paper describes the operational method of deriving cloud-motion winds (CMW) from the IR images (10.5-12.5 μm) of the European geostationary Meteosat satellites. The method is automatic, that is, the cloud tracking uses cross correlation and the height assignment is based on satellite observed brightness temperature and a forecast temperature profile. Semitransparent clouds undergo a height correction based on radiative forward calculations and simultaneous radiance observations in both the IR and water vapor (5.7-7.1 μm) channel. Cloud-motion winds are subject to various quality checks that include manual quality control as the last step. Typically about 3000 wind vectors are produced per day over four production cycles. This paper documents algorithm changes and improvements made to the operational CMWs over the last five years. The improvements are shown by long-term comparisons with both collocated radiosondes and the first guess of the forecast model of the European Centre for Medium-Range Weather Forecasts. In particular, the height assignment of a wind vector and radiance filtering techniques preceding the cloud tracking have ameliorated the errors in Meteosat winds. The slow speed bias of high-level CMWs (<400 hPa) in comparison to radiosonde winds has been reduced from about 4 to 1.3 m s⁻¹ for a mean wind speed of 24 m s⁻¹. Correspondingly, the rms vector error of Meteosat high-level CMWs decreased from about 7.8 to 5 m s⁻¹. Mediumand low-level CMWs were also significantly improved.</description><identifier>ISSN: 0894-8763</identifier><identifier>EISSN: 1520-0450</identifier><identifier>DOI: 10.1175/1520-0450(1993)032<1206:ocmwfm>2.0.co;2</identifier><identifier>CODEN: JOAMEZ</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Geophysics. Techniques, methods, instrumentation and models</subject><ispartof>Journal of applied meteorology (1988), 1993-07, Vol.32 (7), p.1206-1225</ispartof><rights>Copyright 1993, American Meterological Society</rights><rights>1993 INIST-CNRS</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44713931$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44713931$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4807129$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmetz, Johannes</creatorcontrib><creatorcontrib>Holmlund, Kenneth</creatorcontrib><creatorcontrib>Hoffman, Joel</creatorcontrib><creatorcontrib>Strauss, Bernard</creatorcontrib><creatorcontrib>Mason, Brian</creatorcontrib><creatorcontrib>Gaertner, Volker</creatorcontrib><creatorcontrib>Koch, Arno</creatorcontrib><creatorcontrib>Van De Berg, Leo</creatorcontrib><title>Operational Cloud-Motion Winds from Meteosat Infrared Images</title><title>Journal of applied meteorology (1988)</title><description>The displacements of clouds in successive satellite images reflects the atmospheric circulation at various scales. The main application of the satellite-derived cloud-motion vectors is their use as winds in the data analysis for numerical weather prediction. At low latitudes in particular they constitute an indispensible data source for numerical weather prediction. This paper describes the operational method of deriving cloud-motion winds (CMW) from the IR images (10.5-12.5 μm) of the European geostationary Meteosat satellites. The method is automatic, that is, the cloud tracking uses cross correlation and the height assignment is based on satellite observed brightness temperature and a forecast temperature profile. Semitransparent clouds undergo a height correction based on radiative forward calculations and simultaneous radiance observations in both the IR and water vapor (5.7-7.1 μm) channel. Cloud-motion winds are subject to various quality checks that include manual quality control as the last step. Typically about 3000 wind vectors are produced per day over four production cycles. This paper documents algorithm changes and improvements made to the operational CMWs over the last five years. The improvements are shown by long-term comparisons with both collocated radiosondes and the first guess of the forecast model of the European Centre for Medium-Range Weather Forecasts. In particular, the height assignment of a wind vector and radiance filtering techniques preceding the cloud tracking have ameliorated the errors in Meteosat winds. The slow speed bias of high-level CMWs (<400 hPa) in comparison to radiosonde winds has been reduced from about 4 to 1.3 m s⁻¹ for a mean wind speed of 24 m s⁻¹. Correspondingly, the rms vector error of Meteosat high-level CMWs decreased from about 7.8 to 5 m s⁻¹. Mediumand low-level CMWs were also significantly improved.</description><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Geophysics. Techniques, methods, instrumentation and models</subject><issn>0894-8763</issn><issn>1520-0450</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAUhoMoOKc_QeiFiF50O_lo0uoQpLg52NiNsssQ00Q62mYmHeK_t2VjXnp1eDkP7-E8CI0xjDAWyRgnBGJgCdzhLKP3QMkEE-APTtfftn4iIxhp90hO0OBInqIBpBmLU8HpOboIYQMAmDIxQJPV1njVlq5RVZRXblfES9fHaF02RYisd3W0NK1xQbXRvLFeeVNE81p9mnCJzqyqgrk6zCF6n7685a_xYjWb58-LWDOO25iKIiXZh6EctE24pbZINUu15hoYB2ULZayhBqwiVACDTNsuMYGFEUJrOkS3-96td187E1pZl0GbqlKNcbsgCScJTwX7F8QpwVkKogNne1B7F4I3Vm59WSv_IzHIXrPs5clenuw1y06z7DXLVb5cT5eSSJD5SpKu6eZwUgWtqs5Po8twrGPdNUyyDrveY5vQOv-37p6kGcX0F73Hiqk</recordid><startdate>19930701</startdate><enddate>19930701</enddate><creator>Schmetz, Johannes</creator><creator>Holmlund, Kenneth</creator><creator>Hoffman, Joel</creator><creator>Strauss, Bernard</creator><creator>Mason, Brian</creator><creator>Gaertner, Volker</creator><creator>Koch, Arno</creator><creator>Van De Berg, Leo</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19930701</creationdate><title>Operational Cloud-Motion Winds from Meteosat Infrared Images</title><author>Schmetz, Johannes ; Holmlund, Kenneth ; Hoffman, Joel ; Strauss, Bernard ; Mason, Brian ; Gaertner, Volker ; Koch, Arno ; Van De Berg, Leo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-37d829be360cf56f3fd8c48cc6c0460afdaefe3e0fa2370409cf3e04717e77cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Geophysics. Techniques, methods, instrumentation and models</topic><toplevel>online_resources</toplevel><creatorcontrib>Schmetz, Johannes</creatorcontrib><creatorcontrib>Holmlund, Kenneth</creatorcontrib><creatorcontrib>Hoffman, Joel</creatorcontrib><creatorcontrib>Strauss, Bernard</creatorcontrib><creatorcontrib>Mason, Brian</creatorcontrib><creatorcontrib>Gaertner, Volker</creatorcontrib><creatorcontrib>Koch, Arno</creatorcontrib><creatorcontrib>Van De Berg, Leo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied meteorology (1988)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmetz, Johannes</au><au>Holmlund, Kenneth</au><au>Hoffman, Joel</au><au>Strauss, Bernard</au><au>Mason, Brian</au><au>Gaertner, Volker</au><au>Koch, Arno</au><au>Van De Berg, Leo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Operational Cloud-Motion Winds from Meteosat Infrared Images</atitle><jtitle>Journal of applied meteorology (1988)</jtitle><date>1993-07-01</date><risdate>1993</risdate><volume>32</volume><issue>7</issue><spage>1206</spage><epage>1225</epage><pages>1206-1225</pages><issn>0894-8763</issn><eissn>1520-0450</eissn><coden>JOAMEZ</coden><abstract>The displacements of clouds in successive satellite images reflects the atmospheric circulation at various scales. The main application of the satellite-derived cloud-motion vectors is their use as winds in the data analysis for numerical weather prediction. At low latitudes in particular they constitute an indispensible data source for numerical weather prediction. This paper describes the operational method of deriving cloud-motion winds (CMW) from the IR images (10.5-12.5 μm) of the European geostationary Meteosat satellites. The method is automatic, that is, the cloud tracking uses cross correlation and the height assignment is based on satellite observed brightness temperature and a forecast temperature profile. Semitransparent clouds undergo a height correction based on radiative forward calculations and simultaneous radiance observations in both the IR and water vapor (5.7-7.1 μm) channel. Cloud-motion winds are subject to various quality checks that include manual quality control as the last step. Typically about 3000 wind vectors are produced per day over four production cycles. This paper documents algorithm changes and improvements made to the operational CMWs over the last five years. The improvements are shown by long-term comparisons with both collocated radiosondes and the first guess of the forecast model of the European Centre for Medium-Range Weather Forecasts. In particular, the height assignment of a wind vector and radiance filtering techniques preceding the cloud tracking have ameliorated the errors in Meteosat winds. The slow speed bias of high-level CMWs (<400 hPa) in comparison to radiosonde winds has been reduced from about 4 to 1.3 m s⁻¹ for a mean wind speed of 24 m s⁻¹. Correspondingly, the rms vector error of Meteosat high-level CMWs decreased from about 7.8 to 5 m s⁻¹. Mediumand low-level CMWs were also significantly improved.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/1520-0450(1993)032<1206:ocmwfm>2.0.co;2</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-8763 |
ispartof | Journal of applied meteorology (1988), 1993-07, Vol.32 (7), p.1206-1225 |
issn | 0894-8763 1520-0450 |
language | eng |
recordid | cdi_proquest_miscellaneous_26256874 |
source | JSTOR |
subjects | Earth, ocean, space Exact sciences and technology External geophysics Geophysics. Techniques, methods, instrumentation and models |
title | Operational Cloud-Motion Winds from Meteosat Infrared Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A50%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Operational%20Cloud-Motion%20Winds%20from%20Meteosat%20Infrared%20Images&rft.jtitle=Journal%20of%20applied%20meteorology%20(1988)&rft.au=Schmetz,%20Johannes&rft.date=1993-07-01&rft.volume=32&rft.issue=7&rft.spage=1206&rft.epage=1225&rft.pages=1206-1225&rft.issn=0894-8763&rft.eissn=1520-0450&rft.coden=JOAMEZ&rft_id=info:doi/10.1175/1520-0450(1993)032%3C1206:ocmwfm%3E2.0.co;2&rft_dat=%3Cjstor_proqu%3E44713931%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18219807&rft_id=info:pmid/&rft_jstor_id=44713931&rfr_iscdi=true |