Ultrasensitive N‑Channel Graphene Gas Sensors by Nondestructive Molecular Doping
Sensitive and selective detection of target gases is the ultimate goal for commercialization of graphene gas sensors. Here, ultrasensitive n-channel graphene gas sensors were developed by using n-doped graphene with ethylene amines. The exposure of the n-doped graphene to oxidizing gases such as NO2...
Gespeichert in:
Veröffentlicht in: | ACS nano 2022-02, Vol.16 (2), p.2176-2187 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2187 |
---|---|
container_issue | 2 |
container_start_page | 2176 |
container_title | ACS nano |
container_volume | 16 |
creator | Kwon, Bitnuri Bae, Hyeonhu Lee, Hoonkyung Kim, Seunghyun Hwang, Jinhyun Lim, Hyungsub Lee, Jung Hun Cho, Kilwon Ye, Jongpil Lee, Seungae Lee, Wi Hyoung |
description | Sensitive and selective detection of target gases is the ultimate goal for commercialization of graphene gas sensors. Here, ultrasensitive n-channel graphene gas sensors were developed by using n-doped graphene with ethylene amines. The exposure of the n-doped graphene to oxidizing gases such as NO2 leads to a current decrease that depends strongly on the number of amine functional groups in various types of ethylene amines. Graphene doped with diethylenetriamine (DETA) exhibits the highest response, recovery, and long-term sensing stability to NO2, with an average detection limit of 0.83 parts per quadrillion (ppq, 10–15), due to the attractive electrostatic interaction between electron-rich graphene and electron-deficient NO2. Our first-principles calculation supported a preferential adsorption of NO2 on n-doped graphene. In addition, gas molecules on the n-channel graphene provide charged impurities, thereby intensifying the current decrease for an excellent response to oxidizing gases such as NO2 or SO2. On the contrary, absence of such a strong interaction between NH3 and DETA-doped graphene and combined effects of current increase by n-doping and mobility decrease by charged impurities result in a completely no response to NH3. Because the n-channel is easily induced by a top-molecular dopant, a flexible graphene sensor with outstanding NO2 detection capability was successfully fabricated on plastic without vertical stacks of gate-electrode and gate-dielectric. Our gate-free graphene gas sensors enabled by nondestructive molecular n-doping could be used for the selective detection of subppq-level NO2 in a gas mixture with reducing gases. |
doi_str_mv | 10.1021/acsnano.1c08186 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2625271156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2625271156</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-7ccb8559d71d4e384af4de8bb301504c921482f1520e036ab93bcececcc1a5d93</originalsourceid><addsrcrecordid>eNp1kLFOwzAURS0EoqUws6GMSCitnx07zogKFKRSJKASW-Q4Lk2V2sFOkLrxC_wiX0KgoRvy8Dyce_XeQegU8BAwgZFU3khjh6CwAMH3UB8SykMs-Mv-7s-gh468X2HMYhHzQ9SjDIAwzvrocV7WTnptfFEX7zqYfX18jpfSGF0GEyerpTY6mEgfPLWIdT7INsHMmlz72jXqN3JvS62aUrrgylaFeT1GBwtZen3SzQGa31w_j2_D6cPkbnw5DSWltA5jpTLBWJLHkEeaikguolyLLKMYGI5UQiASZAGMYI0pl1lCM6XbpxRIlid0gM63vZWzb027ULouvNJlKY22jU8JJ4zEAIy36GiLKme9d3qRVq5YS7dJAac_ItNOZNqJbBNnXXmTrXW-4__MtcDFFmiT6co2zrS3_lv3Da_zgIc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2625271156</pqid></control><display><type>article</type><title>Ultrasensitive N‑Channel Graphene Gas Sensors by Nondestructive Molecular Doping</title><source>ACS Publications</source><creator>Kwon, Bitnuri ; Bae, Hyeonhu ; Lee, Hoonkyung ; Kim, Seunghyun ; Hwang, Jinhyun ; Lim, Hyungsub ; Lee, Jung Hun ; Cho, Kilwon ; Ye, Jongpil ; Lee, Seungae ; Lee, Wi Hyoung</creator><creatorcontrib>Kwon, Bitnuri ; Bae, Hyeonhu ; Lee, Hoonkyung ; Kim, Seunghyun ; Hwang, Jinhyun ; Lim, Hyungsub ; Lee, Jung Hun ; Cho, Kilwon ; Ye, Jongpil ; Lee, Seungae ; Lee, Wi Hyoung</creatorcontrib><description>Sensitive and selective detection of target gases is the ultimate goal for commercialization of graphene gas sensors. Here, ultrasensitive n-channel graphene gas sensors were developed by using n-doped graphene with ethylene amines. The exposure of the n-doped graphene to oxidizing gases such as NO2 leads to a current decrease that depends strongly on the number of amine functional groups in various types of ethylene amines. Graphene doped with diethylenetriamine (DETA) exhibits the highest response, recovery, and long-term sensing stability to NO2, with an average detection limit of 0.83 parts per quadrillion (ppq, 10–15), due to the attractive electrostatic interaction between electron-rich graphene and electron-deficient NO2. Our first-principles calculation supported a preferential adsorption of NO2 on n-doped graphene. In addition, gas molecules on the n-channel graphene provide charged impurities, thereby intensifying the current decrease for an excellent response to oxidizing gases such as NO2 or SO2. On the contrary, absence of such a strong interaction between NH3 and DETA-doped graphene and combined effects of current increase by n-doping and mobility decrease by charged impurities result in a completely no response to NH3. Because the n-channel is easily induced by a top-molecular dopant, a flexible graphene sensor with outstanding NO2 detection capability was successfully fabricated on plastic without vertical stacks of gate-electrode and gate-dielectric. Our gate-free graphene gas sensors enabled by nondestructive molecular n-doping could be used for the selective detection of subppq-level NO2 in a gas mixture with reducing gases.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.1c08186</identifier><identifier>PMID: 35112565</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2022-02, Vol.16 (2), p.2176-2187</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a333t-7ccb8559d71d4e384af4de8bb301504c921482f1520e036ab93bcececcc1a5d93</citedby><cites>FETCH-LOGICAL-a333t-7ccb8559d71d4e384af4de8bb301504c921482f1520e036ab93bcececcc1a5d93</cites><orcidid>0000-0002-3753-532X ; 0000-0003-4819-7239 ; 0000-0002-2380-4517 ; 0000-0001-7276-6636 ; 0000-0002-6417-1648 ; 0000-0003-0321-3629</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.1c08186$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.1c08186$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35112565$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kwon, Bitnuri</creatorcontrib><creatorcontrib>Bae, Hyeonhu</creatorcontrib><creatorcontrib>Lee, Hoonkyung</creatorcontrib><creatorcontrib>Kim, Seunghyun</creatorcontrib><creatorcontrib>Hwang, Jinhyun</creatorcontrib><creatorcontrib>Lim, Hyungsub</creatorcontrib><creatorcontrib>Lee, Jung Hun</creatorcontrib><creatorcontrib>Cho, Kilwon</creatorcontrib><creatorcontrib>Ye, Jongpil</creatorcontrib><creatorcontrib>Lee, Seungae</creatorcontrib><creatorcontrib>Lee, Wi Hyoung</creatorcontrib><title>Ultrasensitive N‑Channel Graphene Gas Sensors by Nondestructive Molecular Doping</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Sensitive and selective detection of target gases is the ultimate goal for commercialization of graphene gas sensors. Here, ultrasensitive n-channel graphene gas sensors were developed by using n-doped graphene with ethylene amines. The exposure of the n-doped graphene to oxidizing gases such as NO2 leads to a current decrease that depends strongly on the number of amine functional groups in various types of ethylene amines. Graphene doped with diethylenetriamine (DETA) exhibits the highest response, recovery, and long-term sensing stability to NO2, with an average detection limit of 0.83 parts per quadrillion (ppq, 10–15), due to the attractive electrostatic interaction between electron-rich graphene and electron-deficient NO2. Our first-principles calculation supported a preferential adsorption of NO2 on n-doped graphene. In addition, gas molecules on the n-channel graphene provide charged impurities, thereby intensifying the current decrease for an excellent response to oxidizing gases such as NO2 or SO2. On the contrary, absence of such a strong interaction between NH3 and DETA-doped graphene and combined effects of current increase by n-doping and mobility decrease by charged impurities result in a completely no response to NH3. Because the n-channel is easily induced by a top-molecular dopant, a flexible graphene sensor with outstanding NO2 detection capability was successfully fabricated on plastic without vertical stacks of gate-electrode and gate-dielectric. Our gate-free graphene gas sensors enabled by nondestructive molecular n-doping could be used for the selective detection of subppq-level NO2 in a gas mixture with reducing gases.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAURS0EoqUws6GMSCitnx07zogKFKRSJKASW-Q4Lk2V2sFOkLrxC_wiX0KgoRvy8Dyce_XeQegU8BAwgZFU3khjh6CwAMH3UB8SykMs-Mv-7s-gh468X2HMYhHzQ9SjDIAwzvrocV7WTnptfFEX7zqYfX18jpfSGF0GEyerpTY6mEgfPLWIdT7INsHMmlz72jXqN3JvS62aUrrgylaFeT1GBwtZen3SzQGa31w_j2_D6cPkbnw5DSWltA5jpTLBWJLHkEeaikguolyLLKMYGI5UQiASZAGMYI0pl1lCM6XbpxRIlid0gM63vZWzb027ULouvNJlKY22jU8JJ4zEAIy36GiLKme9d3qRVq5YS7dJAac_ItNOZNqJbBNnXXmTrXW-4__MtcDFFmiT6co2zrS3_lv3Da_zgIc</recordid><startdate>20220222</startdate><enddate>20220222</enddate><creator>Kwon, Bitnuri</creator><creator>Bae, Hyeonhu</creator><creator>Lee, Hoonkyung</creator><creator>Kim, Seunghyun</creator><creator>Hwang, Jinhyun</creator><creator>Lim, Hyungsub</creator><creator>Lee, Jung Hun</creator><creator>Cho, Kilwon</creator><creator>Ye, Jongpil</creator><creator>Lee, Seungae</creator><creator>Lee, Wi Hyoung</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3753-532X</orcidid><orcidid>https://orcid.org/0000-0003-4819-7239</orcidid><orcidid>https://orcid.org/0000-0002-2380-4517</orcidid><orcidid>https://orcid.org/0000-0001-7276-6636</orcidid><orcidid>https://orcid.org/0000-0002-6417-1648</orcidid><orcidid>https://orcid.org/0000-0003-0321-3629</orcidid></search><sort><creationdate>20220222</creationdate><title>Ultrasensitive N‑Channel Graphene Gas Sensors by Nondestructive Molecular Doping</title><author>Kwon, Bitnuri ; Bae, Hyeonhu ; Lee, Hoonkyung ; Kim, Seunghyun ; Hwang, Jinhyun ; Lim, Hyungsub ; Lee, Jung Hun ; Cho, Kilwon ; Ye, Jongpil ; Lee, Seungae ; Lee, Wi Hyoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-7ccb8559d71d4e384af4de8bb301504c921482f1520e036ab93bcececcc1a5d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwon, Bitnuri</creatorcontrib><creatorcontrib>Bae, Hyeonhu</creatorcontrib><creatorcontrib>Lee, Hoonkyung</creatorcontrib><creatorcontrib>Kim, Seunghyun</creatorcontrib><creatorcontrib>Hwang, Jinhyun</creatorcontrib><creatorcontrib>Lim, Hyungsub</creatorcontrib><creatorcontrib>Lee, Jung Hun</creatorcontrib><creatorcontrib>Cho, Kilwon</creatorcontrib><creatorcontrib>Ye, Jongpil</creatorcontrib><creatorcontrib>Lee, Seungae</creatorcontrib><creatorcontrib>Lee, Wi Hyoung</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwon, Bitnuri</au><au>Bae, Hyeonhu</au><au>Lee, Hoonkyung</au><au>Kim, Seunghyun</au><au>Hwang, Jinhyun</au><au>Lim, Hyungsub</au><au>Lee, Jung Hun</au><au>Cho, Kilwon</au><au>Ye, Jongpil</au><au>Lee, Seungae</au><au>Lee, Wi Hyoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrasensitive N‑Channel Graphene Gas Sensors by Nondestructive Molecular Doping</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2022-02-22</date><risdate>2022</risdate><volume>16</volume><issue>2</issue><spage>2176</spage><epage>2187</epage><pages>2176-2187</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Sensitive and selective detection of target gases is the ultimate goal for commercialization of graphene gas sensors. Here, ultrasensitive n-channel graphene gas sensors were developed by using n-doped graphene with ethylene amines. The exposure of the n-doped graphene to oxidizing gases such as NO2 leads to a current decrease that depends strongly on the number of amine functional groups in various types of ethylene amines. Graphene doped with diethylenetriamine (DETA) exhibits the highest response, recovery, and long-term sensing stability to NO2, with an average detection limit of 0.83 parts per quadrillion (ppq, 10–15), due to the attractive electrostatic interaction between electron-rich graphene and electron-deficient NO2. Our first-principles calculation supported a preferential adsorption of NO2 on n-doped graphene. In addition, gas molecules on the n-channel graphene provide charged impurities, thereby intensifying the current decrease for an excellent response to oxidizing gases such as NO2 or SO2. On the contrary, absence of such a strong interaction between NH3 and DETA-doped graphene and combined effects of current increase by n-doping and mobility decrease by charged impurities result in a completely no response to NH3. Because the n-channel is easily induced by a top-molecular dopant, a flexible graphene sensor with outstanding NO2 detection capability was successfully fabricated on plastic without vertical stacks of gate-electrode and gate-dielectric. Our gate-free graphene gas sensors enabled by nondestructive molecular n-doping could be used for the selective detection of subppq-level NO2 in a gas mixture with reducing gases.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35112565</pmid><doi>10.1021/acsnano.1c08186</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3753-532X</orcidid><orcidid>https://orcid.org/0000-0003-4819-7239</orcidid><orcidid>https://orcid.org/0000-0002-2380-4517</orcidid><orcidid>https://orcid.org/0000-0001-7276-6636</orcidid><orcidid>https://orcid.org/0000-0002-6417-1648</orcidid><orcidid>https://orcid.org/0000-0003-0321-3629</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2022-02, Vol.16 (2), p.2176-2187 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_2625271156 |
source | ACS Publications |
title | Ultrasensitive N‑Channel Graphene Gas Sensors by Nondestructive Molecular Doping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T15%3A29%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrasensitive%20N%E2%80%91Channel%20Graphene%20Gas%20Sensors%20by%20Nondestructive%20Molecular%20Doping&rft.jtitle=ACS%20nano&rft.au=Kwon,%20Bitnuri&rft.date=2022-02-22&rft.volume=16&rft.issue=2&rft.spage=2176&rft.epage=2187&rft.pages=2176-2187&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.1c08186&rft_dat=%3Cproquest_cross%3E2625271156%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2625271156&rft_id=info:pmid/35112565&rfr_iscdi=true |