Ultrasensitive N‑Channel Graphene Gas Sensors by Nondestructive Molecular Doping

Sensitive and selective detection of target gases is the ultimate goal for commercialization of graphene gas sensors. Here, ultrasensitive n-channel graphene gas sensors were developed by using n-doped graphene with ethylene amines. The exposure of the n-doped graphene to oxidizing gases such as NO2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2022-02, Vol.16 (2), p.2176-2187
Hauptverfasser: Kwon, Bitnuri, Bae, Hyeonhu, Lee, Hoonkyung, Kim, Seunghyun, Hwang, Jinhyun, Lim, Hyungsub, Lee, Jung Hun, Cho, Kilwon, Ye, Jongpil, Lee, Seungae, Lee, Wi Hyoung
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2187
container_issue 2
container_start_page 2176
container_title ACS nano
container_volume 16
creator Kwon, Bitnuri
Bae, Hyeonhu
Lee, Hoonkyung
Kim, Seunghyun
Hwang, Jinhyun
Lim, Hyungsub
Lee, Jung Hun
Cho, Kilwon
Ye, Jongpil
Lee, Seungae
Lee, Wi Hyoung
description Sensitive and selective detection of target gases is the ultimate goal for commercialization of graphene gas sensors. Here, ultrasensitive n-channel graphene gas sensors were developed by using n-doped graphene with ethylene amines. The exposure of the n-doped graphene to oxidizing gases such as NO2 leads to a current decrease that depends strongly on the number of amine functional groups in various types of ethylene amines. Graphene doped with diethylenetriamine (DETA) exhibits the highest response, recovery, and long-term sensing stability to NO2, with an average detection limit of 0.83 parts per quadrillion (ppq, 10–15), due to the attractive electrostatic interaction between electron-rich graphene and electron-deficient NO2. Our first-principles calculation supported a preferential adsorption of NO2 on n-doped graphene. In addition, gas molecules on the n-channel graphene provide charged impurities, thereby intensifying the current decrease for an excellent response to oxidizing gases such as NO2 or SO2. On the contrary, absence of such a strong interaction between NH3 and DETA-doped graphene and combined effects of current increase by n-doping and mobility decrease by charged impurities result in a completely no response to NH3. Because the n-channel is easily induced by a top-molecular dopant, a flexible graphene sensor with outstanding NO2 detection capability was successfully fabricated on plastic without vertical stacks of gate-electrode and gate-dielectric. Our gate-free graphene gas sensors enabled by nondestructive molecular n-doping could be used for the selective detection of subppq-level NO2 in a gas mixture with reducing gases.
doi_str_mv 10.1021/acsnano.1c08186
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2625271156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2625271156</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-7ccb8559d71d4e384af4de8bb301504c921482f1520e036ab93bcececcc1a5d93</originalsourceid><addsrcrecordid>eNp1kLFOwzAURS0EoqUws6GMSCitnx07zogKFKRSJKASW-Q4Lk2V2sFOkLrxC_wiX0KgoRvy8Dyce_XeQegU8BAwgZFU3khjh6CwAMH3UB8SykMs-Mv-7s-gh468X2HMYhHzQ9SjDIAwzvrocV7WTnptfFEX7zqYfX18jpfSGF0GEyerpTY6mEgfPLWIdT7INsHMmlz72jXqN3JvS62aUrrgylaFeT1GBwtZen3SzQGa31w_j2_D6cPkbnw5DSWltA5jpTLBWJLHkEeaikguolyLLKMYGI5UQiASZAGMYI0pl1lCM6XbpxRIlid0gM63vZWzb027ULouvNJlKY22jU8JJ4zEAIy36GiLKme9d3qRVq5YS7dJAac_ItNOZNqJbBNnXXmTrXW-4__MtcDFFmiT6co2zrS3_lv3Da_zgIc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2625271156</pqid></control><display><type>article</type><title>Ultrasensitive N‑Channel Graphene Gas Sensors by Nondestructive Molecular Doping</title><source>ACS Publications</source><creator>Kwon, Bitnuri ; Bae, Hyeonhu ; Lee, Hoonkyung ; Kim, Seunghyun ; Hwang, Jinhyun ; Lim, Hyungsub ; Lee, Jung Hun ; Cho, Kilwon ; Ye, Jongpil ; Lee, Seungae ; Lee, Wi Hyoung</creator><creatorcontrib>Kwon, Bitnuri ; Bae, Hyeonhu ; Lee, Hoonkyung ; Kim, Seunghyun ; Hwang, Jinhyun ; Lim, Hyungsub ; Lee, Jung Hun ; Cho, Kilwon ; Ye, Jongpil ; Lee, Seungae ; Lee, Wi Hyoung</creatorcontrib><description>Sensitive and selective detection of target gases is the ultimate goal for commercialization of graphene gas sensors. Here, ultrasensitive n-channel graphene gas sensors were developed by using n-doped graphene with ethylene amines. The exposure of the n-doped graphene to oxidizing gases such as NO2 leads to a current decrease that depends strongly on the number of amine functional groups in various types of ethylene amines. Graphene doped with diethylenetriamine (DETA) exhibits the highest response, recovery, and long-term sensing stability to NO2, with an average detection limit of 0.83 parts per quadrillion (ppq, 10–15), due to the attractive electrostatic interaction between electron-rich graphene and electron-deficient NO2. Our first-principles calculation supported a preferential adsorption of NO2 on n-doped graphene. In addition, gas molecules on the n-channel graphene provide charged impurities, thereby intensifying the current decrease for an excellent response to oxidizing gases such as NO2 or SO2. On the contrary, absence of such a strong interaction between NH3 and DETA-doped graphene and combined effects of current increase by n-doping and mobility decrease by charged impurities result in a completely no response to NH3. Because the n-channel is easily induced by a top-molecular dopant, a flexible graphene sensor with outstanding NO2 detection capability was successfully fabricated on plastic without vertical stacks of gate-electrode and gate-dielectric. Our gate-free graphene gas sensors enabled by nondestructive molecular n-doping could be used for the selective detection of subppq-level NO2 in a gas mixture with reducing gases.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.1c08186</identifier><identifier>PMID: 35112565</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2022-02, Vol.16 (2), p.2176-2187</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a333t-7ccb8559d71d4e384af4de8bb301504c921482f1520e036ab93bcececcc1a5d93</citedby><cites>FETCH-LOGICAL-a333t-7ccb8559d71d4e384af4de8bb301504c921482f1520e036ab93bcececcc1a5d93</cites><orcidid>0000-0002-3753-532X ; 0000-0003-4819-7239 ; 0000-0002-2380-4517 ; 0000-0001-7276-6636 ; 0000-0002-6417-1648 ; 0000-0003-0321-3629</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.1c08186$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.1c08186$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35112565$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kwon, Bitnuri</creatorcontrib><creatorcontrib>Bae, Hyeonhu</creatorcontrib><creatorcontrib>Lee, Hoonkyung</creatorcontrib><creatorcontrib>Kim, Seunghyun</creatorcontrib><creatorcontrib>Hwang, Jinhyun</creatorcontrib><creatorcontrib>Lim, Hyungsub</creatorcontrib><creatorcontrib>Lee, Jung Hun</creatorcontrib><creatorcontrib>Cho, Kilwon</creatorcontrib><creatorcontrib>Ye, Jongpil</creatorcontrib><creatorcontrib>Lee, Seungae</creatorcontrib><creatorcontrib>Lee, Wi Hyoung</creatorcontrib><title>Ultrasensitive N‑Channel Graphene Gas Sensors by Nondestructive Molecular Doping</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Sensitive and selective detection of target gases is the ultimate goal for commercialization of graphene gas sensors. Here, ultrasensitive n-channel graphene gas sensors were developed by using n-doped graphene with ethylene amines. The exposure of the n-doped graphene to oxidizing gases such as NO2 leads to a current decrease that depends strongly on the number of amine functional groups in various types of ethylene amines. Graphene doped with diethylenetriamine (DETA) exhibits the highest response, recovery, and long-term sensing stability to NO2, with an average detection limit of 0.83 parts per quadrillion (ppq, 10–15), due to the attractive electrostatic interaction between electron-rich graphene and electron-deficient NO2. Our first-principles calculation supported a preferential adsorption of NO2 on n-doped graphene. In addition, gas molecules on the n-channel graphene provide charged impurities, thereby intensifying the current decrease for an excellent response to oxidizing gases such as NO2 or SO2. On the contrary, absence of such a strong interaction between NH3 and DETA-doped graphene and combined effects of current increase by n-doping and mobility decrease by charged impurities result in a completely no response to NH3. Because the n-channel is easily induced by a top-molecular dopant, a flexible graphene sensor with outstanding NO2 detection capability was successfully fabricated on plastic without vertical stacks of gate-electrode and gate-dielectric. Our gate-free graphene gas sensors enabled by nondestructive molecular n-doping could be used for the selective detection of subppq-level NO2 in a gas mixture with reducing gases.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAURS0EoqUws6GMSCitnx07zogKFKRSJKASW-Q4Lk2V2sFOkLrxC_wiX0KgoRvy8Dyce_XeQegU8BAwgZFU3khjh6CwAMH3UB8SykMs-Mv-7s-gh468X2HMYhHzQ9SjDIAwzvrocV7WTnptfFEX7zqYfX18jpfSGF0GEyerpTY6mEgfPLWIdT7INsHMmlz72jXqN3JvS62aUrrgylaFeT1GBwtZen3SzQGa31w_j2_D6cPkbnw5DSWltA5jpTLBWJLHkEeaikguolyLLKMYGI5UQiASZAGMYI0pl1lCM6XbpxRIlid0gM63vZWzb027ULouvNJlKY22jU8JJ4zEAIy36GiLKme9d3qRVq5YS7dJAac_ItNOZNqJbBNnXXmTrXW-4__MtcDFFmiT6co2zrS3_lv3Da_zgIc</recordid><startdate>20220222</startdate><enddate>20220222</enddate><creator>Kwon, Bitnuri</creator><creator>Bae, Hyeonhu</creator><creator>Lee, Hoonkyung</creator><creator>Kim, Seunghyun</creator><creator>Hwang, Jinhyun</creator><creator>Lim, Hyungsub</creator><creator>Lee, Jung Hun</creator><creator>Cho, Kilwon</creator><creator>Ye, Jongpil</creator><creator>Lee, Seungae</creator><creator>Lee, Wi Hyoung</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3753-532X</orcidid><orcidid>https://orcid.org/0000-0003-4819-7239</orcidid><orcidid>https://orcid.org/0000-0002-2380-4517</orcidid><orcidid>https://orcid.org/0000-0001-7276-6636</orcidid><orcidid>https://orcid.org/0000-0002-6417-1648</orcidid><orcidid>https://orcid.org/0000-0003-0321-3629</orcidid></search><sort><creationdate>20220222</creationdate><title>Ultrasensitive N‑Channel Graphene Gas Sensors by Nondestructive Molecular Doping</title><author>Kwon, Bitnuri ; Bae, Hyeonhu ; Lee, Hoonkyung ; Kim, Seunghyun ; Hwang, Jinhyun ; Lim, Hyungsub ; Lee, Jung Hun ; Cho, Kilwon ; Ye, Jongpil ; Lee, Seungae ; Lee, Wi Hyoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-7ccb8559d71d4e384af4de8bb301504c921482f1520e036ab93bcececcc1a5d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwon, Bitnuri</creatorcontrib><creatorcontrib>Bae, Hyeonhu</creatorcontrib><creatorcontrib>Lee, Hoonkyung</creatorcontrib><creatorcontrib>Kim, Seunghyun</creatorcontrib><creatorcontrib>Hwang, Jinhyun</creatorcontrib><creatorcontrib>Lim, Hyungsub</creatorcontrib><creatorcontrib>Lee, Jung Hun</creatorcontrib><creatorcontrib>Cho, Kilwon</creatorcontrib><creatorcontrib>Ye, Jongpil</creatorcontrib><creatorcontrib>Lee, Seungae</creatorcontrib><creatorcontrib>Lee, Wi Hyoung</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwon, Bitnuri</au><au>Bae, Hyeonhu</au><au>Lee, Hoonkyung</au><au>Kim, Seunghyun</au><au>Hwang, Jinhyun</au><au>Lim, Hyungsub</au><au>Lee, Jung Hun</au><au>Cho, Kilwon</au><au>Ye, Jongpil</au><au>Lee, Seungae</au><au>Lee, Wi Hyoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrasensitive N‑Channel Graphene Gas Sensors by Nondestructive Molecular Doping</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2022-02-22</date><risdate>2022</risdate><volume>16</volume><issue>2</issue><spage>2176</spage><epage>2187</epage><pages>2176-2187</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Sensitive and selective detection of target gases is the ultimate goal for commercialization of graphene gas sensors. Here, ultrasensitive n-channel graphene gas sensors were developed by using n-doped graphene with ethylene amines. The exposure of the n-doped graphene to oxidizing gases such as NO2 leads to a current decrease that depends strongly on the number of amine functional groups in various types of ethylene amines. Graphene doped with diethylenetriamine (DETA) exhibits the highest response, recovery, and long-term sensing stability to NO2, with an average detection limit of 0.83 parts per quadrillion (ppq, 10–15), due to the attractive electrostatic interaction between electron-rich graphene and electron-deficient NO2. Our first-principles calculation supported a preferential adsorption of NO2 on n-doped graphene. In addition, gas molecules on the n-channel graphene provide charged impurities, thereby intensifying the current decrease for an excellent response to oxidizing gases such as NO2 or SO2. On the contrary, absence of such a strong interaction between NH3 and DETA-doped graphene and combined effects of current increase by n-doping and mobility decrease by charged impurities result in a completely no response to NH3. Because the n-channel is easily induced by a top-molecular dopant, a flexible graphene sensor with outstanding NO2 detection capability was successfully fabricated on plastic without vertical stacks of gate-electrode and gate-dielectric. Our gate-free graphene gas sensors enabled by nondestructive molecular n-doping could be used for the selective detection of subppq-level NO2 in a gas mixture with reducing gases.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35112565</pmid><doi>10.1021/acsnano.1c08186</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3753-532X</orcidid><orcidid>https://orcid.org/0000-0003-4819-7239</orcidid><orcidid>https://orcid.org/0000-0002-2380-4517</orcidid><orcidid>https://orcid.org/0000-0001-7276-6636</orcidid><orcidid>https://orcid.org/0000-0002-6417-1648</orcidid><orcidid>https://orcid.org/0000-0003-0321-3629</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2022-02, Vol.16 (2), p.2176-2187
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2625271156
source ACS Publications
title Ultrasensitive N‑Channel Graphene Gas Sensors by Nondestructive Molecular Doping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T15%3A29%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrasensitive%20N%E2%80%91Channel%20Graphene%20Gas%20Sensors%20by%20Nondestructive%20Molecular%20Doping&rft.jtitle=ACS%20nano&rft.au=Kwon,%20Bitnuri&rft.date=2022-02-22&rft.volume=16&rft.issue=2&rft.spage=2176&rft.epage=2187&rft.pages=2176-2187&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.1c08186&rft_dat=%3Cproquest_cross%3E2625271156%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2625271156&rft_id=info:pmid/35112565&rfr_iscdi=true