Nonlinear Dynamic Response of Frames Using Lanczos Modal Analysis
Modal reduction methods are a useful alternative to fully discrete matrix models for the efficient simulation of large dynamic response problems in frame analysis. The primary advantage of modal methods is computational efficiency, since they require less memory and fewer floating-point operations r...
Gespeichert in:
Veröffentlicht in: | Journal of structural engineering (New York, N.Y.) N.Y.), 1996-12, Vol.122 (12), p.1418-1426 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1426 |
---|---|
container_issue | 12 |
container_start_page | 1418 |
container_title | Journal of structural engineering (New York, N.Y.) |
container_volume | 122 |
creator | Vukazich, Steven M Mish, Kyran D Romstad, Karl M |
description | Modal reduction methods are a useful alternative to fully discrete matrix models for the efficient simulation of large dynamic response problems in frame analysis. The primary advantage of modal methods is computational efficiency, since they require less memory and fewer floating-point operations relative to conventional dynamic analyses of frames. The most important limitation of modal schemes is the difficulty in capturing strong nonlinear effects while retaining the simplicity of standard modal analysis algorithms. Modal methods obtained from inverse Lanczos iteration constitute a particularly elegant protocol for obtaining approximate time histories of response for nonlinear analyses of large frames and similar flexible structures. Examples underlining the strengths and weaknesses of Lanczos approximations are presented, and conclusions as to the utility of such modal reduction schemes for nonlinear dynamic analysis are drawn. |
doi_str_mv | 10.1061/(ASCE)0733-9445(1996)122:12(1418) |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26251477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26251477</sourcerecordid><originalsourceid>FETCH-LOGICAL-a386t-65dff77ae73de266d7f7f402f17e4aceb572f6c337c9c080fda4fc410f70fc1f3</originalsourceid><addsrcrecordid>eNqFkM9LwzAUgIMoOKf_Q0-yHqp5bdq0niz74ZQ5wTkQLyGmiXS0yUy2w_zrTTf16uHxCHx8j3wIhYCvAGdwPSgXw3GIaZJEBSHpAIoiCyGObyAeAIE8PEI9KEgSpQRej1HvjzxFZ86tMMY0hbyHyrnRTa0lt8Fop3lbi-BZurXRTgZGBRPLW-mCpav1RzDjWnwZFzyaijdBqXmzc7U7RyeKN05e_Ow-Wk7GL8NpNHu6ux-Ws4gnebaJsrRSilIuaVLJOMsqqqgiOFZAJeFCvqc0VplIEioKgXOsKk6UIIAVxUqASvro8uBdW_O5lW7D2toJ2TRcS7N1LM7iFAilHrw9gMIa56xUbG3rltsdA8y6eIx18ViXhHVJWBeP-Xh-WBfPK94OCu4vsJXZWv9Zxx4W4_lo6tt5Fu-XH8_j_ePX_p_8G0h8fDU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26251477</pqid></control><display><type>article</type><title>Nonlinear Dynamic Response of Frames Using Lanczos Modal Analysis</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Vukazich, Steven M ; Mish, Kyran D ; Romstad, Karl M</creator><creatorcontrib>Vukazich, Steven M ; Mish, Kyran D ; Romstad, Karl M</creatorcontrib><description>Modal reduction methods are a useful alternative to fully discrete matrix models for the efficient simulation of large dynamic response problems in frame analysis. The primary advantage of modal methods is computational efficiency, since they require less memory and fewer floating-point operations relative to conventional dynamic analyses of frames. The most important limitation of modal schemes is the difficulty in capturing strong nonlinear effects while retaining the simplicity of standard modal analysis algorithms. Modal methods obtained from inverse Lanczos iteration constitute a particularly elegant protocol for obtaining approximate time histories of response for nonlinear analyses of large frames and similar flexible structures. Examples underlining the strengths and weaknesses of Lanczos approximations are presented, and conclusions as to the utility of such modal reduction schemes for nonlinear dynamic analysis are drawn.</description><identifier>ISSN: 0733-9445</identifier><identifier>EISSN: 1943-541X</identifier><identifier>DOI: 10.1061/(ASCE)0733-9445(1996)122:12(1418)</identifier><language>eng</language><publisher>American Society of Civil Engineers</publisher><subject>TECHNICAL PAPERS</subject><ispartof>Journal of structural engineering (New York, N.Y.), 1996-12, Vol.122 (12), p.1418-1426</ispartof><rights>Copyright © 1996 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a386t-65dff77ae73de266d7f7f402f17e4aceb572f6c337c9c080fda4fc410f70fc1f3</citedby><cites>FETCH-LOGICAL-a386t-65dff77ae73de266d7f7f402f17e4aceb572f6c337c9c080fda4fc410f70fc1f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)0733-9445(1996)122:12(1418)$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9445(1996)122:12(1418)$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,75964,75972</link.rule.ids></links><search><creatorcontrib>Vukazich, Steven M</creatorcontrib><creatorcontrib>Mish, Kyran D</creatorcontrib><creatorcontrib>Romstad, Karl M</creatorcontrib><title>Nonlinear Dynamic Response of Frames Using Lanczos Modal Analysis</title><title>Journal of structural engineering (New York, N.Y.)</title><description>Modal reduction methods are a useful alternative to fully discrete matrix models for the efficient simulation of large dynamic response problems in frame analysis. The primary advantage of modal methods is computational efficiency, since they require less memory and fewer floating-point operations relative to conventional dynamic analyses of frames. The most important limitation of modal schemes is the difficulty in capturing strong nonlinear effects while retaining the simplicity of standard modal analysis algorithms. Modal methods obtained from inverse Lanczos iteration constitute a particularly elegant protocol for obtaining approximate time histories of response for nonlinear analyses of large frames and similar flexible structures. Examples underlining the strengths and weaknesses of Lanczos approximations are presented, and conclusions as to the utility of such modal reduction schemes for nonlinear dynamic analysis are drawn.</description><subject>TECHNICAL PAPERS</subject><issn>0733-9445</issn><issn>1943-541X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAUgIMoOKf_Q0-yHqp5bdq0niz74ZQ5wTkQLyGmiXS0yUy2w_zrTTf16uHxCHx8j3wIhYCvAGdwPSgXw3GIaZJEBSHpAIoiCyGObyAeAIE8PEI9KEgSpQRej1HvjzxFZ86tMMY0hbyHyrnRTa0lt8Fop3lbi-BZurXRTgZGBRPLW-mCpav1RzDjWnwZFzyaijdBqXmzc7U7RyeKN05e_Ow-Wk7GL8NpNHu6ux-Ws4gnebaJsrRSilIuaVLJOMsqqqgiOFZAJeFCvqc0VplIEioKgXOsKk6UIIAVxUqASvro8uBdW_O5lW7D2toJ2TRcS7N1LM7iFAilHrw9gMIa56xUbG3rltsdA8y6eIx18ViXhHVJWBeP-Xh-WBfPK94OCu4vsJXZWv9Zxx4W4_lo6tt5Fu-XH8_j_ePX_p_8G0h8fDU</recordid><startdate>19961201</startdate><enddate>19961201</enddate><creator>Vukazich, Steven M</creator><creator>Mish, Kyran D</creator><creator>Romstad, Karl M</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SM</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>19961201</creationdate><title>Nonlinear Dynamic Response of Frames Using Lanczos Modal Analysis</title><author>Vukazich, Steven M ; Mish, Kyran D ; Romstad, Karl M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a386t-65dff77ae73de266d7f7f402f17e4aceb572f6c337c9c080fda4fc410f70fc1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>TECHNICAL PAPERS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vukazich, Steven M</creatorcontrib><creatorcontrib>Mish, Kyran D</creatorcontrib><creatorcontrib>Romstad, Karl M</creatorcontrib><collection>CrossRef</collection><collection>Earthquake Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of structural engineering (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vukazich, Steven M</au><au>Mish, Kyran D</au><au>Romstad, Karl M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Dynamic Response of Frames Using Lanczos Modal Analysis</atitle><jtitle>Journal of structural engineering (New York, N.Y.)</jtitle><date>1996-12-01</date><risdate>1996</risdate><volume>122</volume><issue>12</issue><spage>1418</spage><epage>1426</epage><pages>1418-1426</pages><issn>0733-9445</issn><eissn>1943-541X</eissn><abstract>Modal reduction methods are a useful alternative to fully discrete matrix models for the efficient simulation of large dynamic response problems in frame analysis. The primary advantage of modal methods is computational efficiency, since they require less memory and fewer floating-point operations relative to conventional dynamic analyses of frames. The most important limitation of modal schemes is the difficulty in capturing strong nonlinear effects while retaining the simplicity of standard modal analysis algorithms. Modal methods obtained from inverse Lanczos iteration constitute a particularly elegant protocol for obtaining approximate time histories of response for nonlinear analyses of large frames and similar flexible structures. Examples underlining the strengths and weaknesses of Lanczos approximations are presented, and conclusions as to the utility of such modal reduction schemes for nonlinear dynamic analysis are drawn.</abstract><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)0733-9445(1996)122:12(1418)</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0733-9445 |
ispartof | Journal of structural engineering (New York, N.Y.), 1996-12, Vol.122 (12), p.1418-1426 |
issn | 0733-9445 1943-541X |
language | eng |
recordid | cdi_proquest_miscellaneous_26251477 |
source | American Society of Civil Engineers:NESLI2:Journals:2014 |
subjects | TECHNICAL PAPERS |
title | Nonlinear Dynamic Response of Frames Using Lanczos Modal Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A00%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Dynamic%20Response%20of%20Frames%20Using%20Lanczos%20Modal%20Analysis&rft.jtitle=Journal%20of%20structural%20engineering%20(New%20York,%20N.Y.)&rft.au=Vukazich,%20Steven%20M&rft.date=1996-12-01&rft.volume=122&rft.issue=12&rft.spage=1418&rft.epage=1426&rft.pages=1418-1426&rft.issn=0733-9445&rft.eissn=1943-541X&rft_id=info:doi/10.1061/(ASCE)0733-9445(1996)122:12(1418)&rft_dat=%3Cproquest_cross%3E26251477%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26251477&rft_id=info:pmid/&rfr_iscdi=true |