Nonlinear Dynamic Response of Frames Using Lanczos Modal Analysis

Modal reduction methods are a useful alternative to fully discrete matrix models for the efficient simulation of large dynamic response problems in frame analysis. The primary advantage of modal methods is computational efficiency, since they require less memory and fewer floating-point operations r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of structural engineering (New York, N.Y.) N.Y.), 1996-12, Vol.122 (12), p.1418-1426
Hauptverfasser: Vukazich, Steven M, Mish, Kyran D, Romstad, Karl M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1426
container_issue 12
container_start_page 1418
container_title Journal of structural engineering (New York, N.Y.)
container_volume 122
creator Vukazich, Steven M
Mish, Kyran D
Romstad, Karl M
description Modal reduction methods are a useful alternative to fully discrete matrix models for the efficient simulation of large dynamic response problems in frame analysis. The primary advantage of modal methods is computational efficiency, since they require less memory and fewer floating-point operations relative to conventional dynamic analyses of frames. The most important limitation of modal schemes is the difficulty in capturing strong nonlinear effects while retaining the simplicity of standard modal analysis algorithms. Modal methods obtained from inverse Lanczos iteration constitute a particularly elegant protocol for obtaining approximate time histories of response for nonlinear analyses of large frames and similar flexible structures. Examples underlining the strengths and weaknesses of Lanczos approximations are presented, and conclusions as to the utility of such modal reduction schemes for nonlinear dynamic analysis are drawn.
doi_str_mv 10.1061/(ASCE)0733-9445(1996)122:12(1418)
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26251477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26251477</sourcerecordid><originalsourceid>FETCH-LOGICAL-a386t-65dff77ae73de266d7f7f402f17e4aceb572f6c337c9c080fda4fc410f70fc1f3</originalsourceid><addsrcrecordid>eNqFkM9LwzAUgIMoOKf_Q0-yHqp5bdq0niz74ZQ5wTkQLyGmiXS0yUy2w_zrTTf16uHxCHx8j3wIhYCvAGdwPSgXw3GIaZJEBSHpAIoiCyGObyAeAIE8PEI9KEgSpQRej1HvjzxFZ86tMMY0hbyHyrnRTa0lt8Fop3lbi-BZurXRTgZGBRPLW-mCpav1RzDjWnwZFzyaijdBqXmzc7U7RyeKN05e_Ow-Wk7GL8NpNHu6ux-Ws4gnebaJsrRSilIuaVLJOMsqqqgiOFZAJeFCvqc0VplIEioKgXOsKk6UIIAVxUqASvro8uBdW_O5lW7D2toJ2TRcS7N1LM7iFAilHrw9gMIa56xUbG3rltsdA8y6eIx18ViXhHVJWBeP-Xh-WBfPK94OCu4vsJXZWv9Zxx4W4_lo6tt5Fu-XH8_j_ePX_p_8G0h8fDU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26251477</pqid></control><display><type>article</type><title>Nonlinear Dynamic Response of Frames Using Lanczos Modal Analysis</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Vukazich, Steven M ; Mish, Kyran D ; Romstad, Karl M</creator><creatorcontrib>Vukazich, Steven M ; Mish, Kyran D ; Romstad, Karl M</creatorcontrib><description>Modal reduction methods are a useful alternative to fully discrete matrix models for the efficient simulation of large dynamic response problems in frame analysis. The primary advantage of modal methods is computational efficiency, since they require less memory and fewer floating-point operations relative to conventional dynamic analyses of frames. The most important limitation of modal schemes is the difficulty in capturing strong nonlinear effects while retaining the simplicity of standard modal analysis algorithms. Modal methods obtained from inverse Lanczos iteration constitute a particularly elegant protocol for obtaining approximate time histories of response for nonlinear analyses of large frames and similar flexible structures. Examples underlining the strengths and weaknesses of Lanczos approximations are presented, and conclusions as to the utility of such modal reduction schemes for nonlinear dynamic analysis are drawn.</description><identifier>ISSN: 0733-9445</identifier><identifier>EISSN: 1943-541X</identifier><identifier>DOI: 10.1061/(ASCE)0733-9445(1996)122:12(1418)</identifier><language>eng</language><publisher>American Society of Civil Engineers</publisher><subject>TECHNICAL PAPERS</subject><ispartof>Journal of structural engineering (New York, N.Y.), 1996-12, Vol.122 (12), p.1418-1426</ispartof><rights>Copyright © 1996 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a386t-65dff77ae73de266d7f7f402f17e4aceb572f6c337c9c080fda4fc410f70fc1f3</citedby><cites>FETCH-LOGICAL-a386t-65dff77ae73de266d7f7f402f17e4aceb572f6c337c9c080fda4fc410f70fc1f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)0733-9445(1996)122:12(1418)$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9445(1996)122:12(1418)$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,75964,75972</link.rule.ids></links><search><creatorcontrib>Vukazich, Steven M</creatorcontrib><creatorcontrib>Mish, Kyran D</creatorcontrib><creatorcontrib>Romstad, Karl M</creatorcontrib><title>Nonlinear Dynamic Response of Frames Using Lanczos Modal Analysis</title><title>Journal of structural engineering (New York, N.Y.)</title><description>Modal reduction methods are a useful alternative to fully discrete matrix models for the efficient simulation of large dynamic response problems in frame analysis. The primary advantage of modal methods is computational efficiency, since they require less memory and fewer floating-point operations relative to conventional dynamic analyses of frames. The most important limitation of modal schemes is the difficulty in capturing strong nonlinear effects while retaining the simplicity of standard modal analysis algorithms. Modal methods obtained from inverse Lanczos iteration constitute a particularly elegant protocol for obtaining approximate time histories of response for nonlinear analyses of large frames and similar flexible structures. Examples underlining the strengths and weaknesses of Lanczos approximations are presented, and conclusions as to the utility of such modal reduction schemes for nonlinear dynamic analysis are drawn.</description><subject>TECHNICAL PAPERS</subject><issn>0733-9445</issn><issn>1943-541X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAUgIMoOKf_Q0-yHqp5bdq0niz74ZQ5wTkQLyGmiXS0yUy2w_zrTTf16uHxCHx8j3wIhYCvAGdwPSgXw3GIaZJEBSHpAIoiCyGObyAeAIE8PEI9KEgSpQRej1HvjzxFZ86tMMY0hbyHyrnRTa0lt8Fop3lbi-BZurXRTgZGBRPLW-mCpav1RzDjWnwZFzyaijdBqXmzc7U7RyeKN05e_Ow-Wk7GL8NpNHu6ux-Ws4gnebaJsrRSilIuaVLJOMsqqqgiOFZAJeFCvqc0VplIEioKgXOsKk6UIIAVxUqASvro8uBdW_O5lW7D2toJ2TRcS7N1LM7iFAilHrw9gMIa56xUbG3rltsdA8y6eIx18ViXhHVJWBeP-Xh-WBfPK94OCu4vsJXZWv9Zxx4W4_lo6tt5Fu-XH8_j_ePX_p_8G0h8fDU</recordid><startdate>19961201</startdate><enddate>19961201</enddate><creator>Vukazich, Steven M</creator><creator>Mish, Kyran D</creator><creator>Romstad, Karl M</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SM</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>19961201</creationdate><title>Nonlinear Dynamic Response of Frames Using Lanczos Modal Analysis</title><author>Vukazich, Steven M ; Mish, Kyran D ; Romstad, Karl M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a386t-65dff77ae73de266d7f7f402f17e4aceb572f6c337c9c080fda4fc410f70fc1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>TECHNICAL PAPERS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vukazich, Steven M</creatorcontrib><creatorcontrib>Mish, Kyran D</creatorcontrib><creatorcontrib>Romstad, Karl M</creatorcontrib><collection>CrossRef</collection><collection>Earthquake Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of structural engineering (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vukazich, Steven M</au><au>Mish, Kyran D</au><au>Romstad, Karl M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Dynamic Response of Frames Using Lanczos Modal Analysis</atitle><jtitle>Journal of structural engineering (New York, N.Y.)</jtitle><date>1996-12-01</date><risdate>1996</risdate><volume>122</volume><issue>12</issue><spage>1418</spage><epage>1426</epage><pages>1418-1426</pages><issn>0733-9445</issn><eissn>1943-541X</eissn><abstract>Modal reduction methods are a useful alternative to fully discrete matrix models for the efficient simulation of large dynamic response problems in frame analysis. The primary advantage of modal methods is computational efficiency, since they require less memory and fewer floating-point operations relative to conventional dynamic analyses of frames. The most important limitation of modal schemes is the difficulty in capturing strong nonlinear effects while retaining the simplicity of standard modal analysis algorithms. Modal methods obtained from inverse Lanczos iteration constitute a particularly elegant protocol for obtaining approximate time histories of response for nonlinear analyses of large frames and similar flexible structures. Examples underlining the strengths and weaknesses of Lanczos approximations are presented, and conclusions as to the utility of such modal reduction schemes for nonlinear dynamic analysis are drawn.</abstract><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)0733-9445(1996)122:12(1418)</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0733-9445
ispartof Journal of structural engineering (New York, N.Y.), 1996-12, Vol.122 (12), p.1418-1426
issn 0733-9445
1943-541X
language eng
recordid cdi_proquest_miscellaneous_26251477
source American Society of Civil Engineers:NESLI2:Journals:2014
subjects TECHNICAL PAPERS
title Nonlinear Dynamic Response of Frames Using Lanczos Modal Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A00%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Dynamic%20Response%20of%20Frames%20Using%20Lanczos%20Modal%20Analysis&rft.jtitle=Journal%20of%20structural%20engineering%20(New%20York,%20N.Y.)&rft.au=Vukazich,%20Steven%20M&rft.date=1996-12-01&rft.volume=122&rft.issue=12&rft.spage=1418&rft.epage=1426&rft.pages=1418-1426&rft.issn=0733-9445&rft.eissn=1943-541X&rft_id=info:doi/10.1061/(ASCE)0733-9445(1996)122:12(1418)&rft_dat=%3Cproquest_cross%3E26251477%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26251477&rft_id=info:pmid/&rfr_iscdi=true