A Reconfigurable Two‐WSe2‐Transistor Synaptic Cell for Reinforcement Learning
Reward‐modulated spike‐timing‐dependent plasticity (R‐STDP) is a brain‐inspired reinforcement learning (RL) rule, exhibiting potential for decision‐making tasks and artificial general intelligence. However, the hardware implementation of the reward‐modulation process in R‐STDP usually requires compl...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2022-12, Vol.34 (48), p.e2107754-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 48 |
container_start_page | e2107754 |
container_title | Advanced materials (Weinheim) |
container_volume | 34 |
creator | Zhou, Yue Wang, Yasai Zhuge, Fuwei Guo, Jianmiao Ma, Sijie Wang, Jingli Tang, Zijian Li, Yi Miao, Xiangshui He, Yuhui Chai, Yang |
description | Reward‐modulated spike‐timing‐dependent plasticity (R‐STDP) is a brain‐inspired reinforcement learning (RL) rule, exhibiting potential for decision‐making tasks and artificial general intelligence. However, the hardware implementation of the reward‐modulation process in R‐STDP usually requires complicated Si complementary metal–oxide–semiconductor (CMOS) circuit design that causes high power consumption and large footprint. Here, a design with two synaptic transistors (2T) connected in a parallel structure is experimentally demonstrated. The 2T unit based on WSe2 ferroelectric transistors exhibits reconfigurable polarity behavior, where one channel can be tuned as n‐type and the other as p‐type due to nonvolatile ferroelectric polarization. In this way, opposite synaptic weight update behaviors with multilevel (>6 bit) conductance states, ultralow nonlinearity (0.56/−1.23), and large Gmax/Gmin ratio of 30 are realized. By applying positive/negative reward to (anti‐)STDP component of 2T cell, R‐STDP learning rules are realized for training the spiking neural network and demonstrated to solve the classical cart–pole problem, exhibiting a way for realizing low‐power (32 pJ per forward process) and highly area‐efficient (100 µm2) hardware chip for reinforcement learning.
Hardware implementation for reward‐modulated spike‐timing‐dependent plasticity (R‐STDP) is demonstrated with a unique 2T synaptic cell structure, which realizes the functions of both STDP and anti‐STDP using a simple hardware structure. The total synaptic weight is increased (decreased) by applying feedback signal to gate1 or gate2 when, respectively, a positive or negative reward signal comes. |
doi_str_mv | 10.1002/adma.202107754 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2624950871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2742938858</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2664-5b6154f4169a26a4f6767c331b30356588d5d16deab623606abb02c36b58b4a73</originalsourceid><addsrcrecordid>eNpdkMtKw0AYhQdRsFa3rgNu3KTOPTPLUK9QEduKy2EmmZQpySRmGkp3PoLP6JM4peLC1eH_-Th8HAAuEZwgCPGNLhs9wRAjmGWMHoERYhilFEp2DEZQEpZKTsUpOAthDSGUHPIReM2TuS1aX7nV0GtT22S5bb8_v94XFsdY9toHFzZtnyx2XncbVyRTW9dJFT9z63zMwjbWb5KZ1b13fnUOTipdB3vxm2Pwdn-3nD6ms5eHp2k-SzvMOU2Z4YjRiiIuNeaaVjzjWUEIMgQSxpkQJSsRL602HJPoqo2BuCDcMGGozsgYXB96u779GGzYqMaFIrppb9shKMwxlQyKDEX06h-6bofeRzuFM4olEYKJSMkDtXW13amud43udwpBtZ9X7edVf_Oq_PY5_7vID-XycPo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2742938858</pqid></control><display><type>article</type><title>A Reconfigurable Two‐WSe2‐Transistor Synaptic Cell for Reinforcement Learning</title><source>Wiley Online Library All Journals</source><creator>Zhou, Yue ; Wang, Yasai ; Zhuge, Fuwei ; Guo, Jianmiao ; Ma, Sijie ; Wang, Jingli ; Tang, Zijian ; Li, Yi ; Miao, Xiangshui ; He, Yuhui ; Chai, Yang</creator><creatorcontrib>Zhou, Yue ; Wang, Yasai ; Zhuge, Fuwei ; Guo, Jianmiao ; Ma, Sijie ; Wang, Jingli ; Tang, Zijian ; Li, Yi ; Miao, Xiangshui ; He, Yuhui ; Chai, Yang</creatorcontrib><description>Reward‐modulated spike‐timing‐dependent plasticity (R‐STDP) is a brain‐inspired reinforcement learning (RL) rule, exhibiting potential for decision‐making tasks and artificial general intelligence. However, the hardware implementation of the reward‐modulation process in R‐STDP usually requires complicated Si complementary metal–oxide–semiconductor (CMOS) circuit design that causes high power consumption and large footprint. Here, a design with two synaptic transistors (2T) connected in a parallel structure is experimentally demonstrated. The 2T unit based on WSe2 ferroelectric transistors exhibits reconfigurable polarity behavior, where one channel can be tuned as n‐type and the other as p‐type due to nonvolatile ferroelectric polarization. In this way, opposite synaptic weight update behaviors with multilevel (>6 bit) conductance states, ultralow nonlinearity (0.56/−1.23), and large Gmax/Gmin ratio of 30 are realized. By applying positive/negative reward to (anti‐)STDP component of 2T cell, R‐STDP learning rules are realized for training the spiking neural network and demonstrated to solve the classical cart–pole problem, exhibiting a way for realizing low‐power (32 pJ per forward process) and highly area‐efficient (100 µm2) hardware chip for reinforcement learning.
Hardware implementation for reward‐modulated spike‐timing‐dependent plasticity (R‐STDP) is demonstrated with a unique 2T synaptic cell structure, which realizes the functions of both STDP and anti‐STDP using a simple hardware structure. The total synaptic weight is increased (decreased) by applying feedback signal to gate1 or gate2 when, respectively, a positive or negative reward signal comes.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202107754</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>2D semiconductors ; Circuit design ; CMOS ; Ferroelectric materials ; Ferroelectricity ; Hardware ; Learning ; Materials science ; Neural networks ; Power consumption ; Reconfiguration ; reinforcement learning ; reward‐modulated spike‐timing‐dependent plasticity ; Semiconductor devices ; synaptic device ; Transistors</subject><ispartof>Advanced materials (Weinheim), 2022-12, Vol.34 (48), p.e2107754-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8943-0861</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202107754$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202107754$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Zhou, Yue</creatorcontrib><creatorcontrib>Wang, Yasai</creatorcontrib><creatorcontrib>Zhuge, Fuwei</creatorcontrib><creatorcontrib>Guo, Jianmiao</creatorcontrib><creatorcontrib>Ma, Sijie</creatorcontrib><creatorcontrib>Wang, Jingli</creatorcontrib><creatorcontrib>Tang, Zijian</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Miao, Xiangshui</creatorcontrib><creatorcontrib>He, Yuhui</creatorcontrib><creatorcontrib>Chai, Yang</creatorcontrib><title>A Reconfigurable Two‐WSe2‐Transistor Synaptic Cell for Reinforcement Learning</title><title>Advanced materials (Weinheim)</title><description>Reward‐modulated spike‐timing‐dependent plasticity (R‐STDP) is a brain‐inspired reinforcement learning (RL) rule, exhibiting potential for decision‐making tasks and artificial general intelligence. However, the hardware implementation of the reward‐modulation process in R‐STDP usually requires complicated Si complementary metal–oxide–semiconductor (CMOS) circuit design that causes high power consumption and large footprint. Here, a design with two synaptic transistors (2T) connected in a parallel structure is experimentally demonstrated. The 2T unit based on WSe2 ferroelectric transistors exhibits reconfigurable polarity behavior, where one channel can be tuned as n‐type and the other as p‐type due to nonvolatile ferroelectric polarization. In this way, opposite synaptic weight update behaviors with multilevel (>6 bit) conductance states, ultralow nonlinearity (0.56/−1.23), and large Gmax/Gmin ratio of 30 are realized. By applying positive/negative reward to (anti‐)STDP component of 2T cell, R‐STDP learning rules are realized for training the spiking neural network and demonstrated to solve the classical cart–pole problem, exhibiting a way for realizing low‐power (32 pJ per forward process) and highly area‐efficient (100 µm2) hardware chip for reinforcement learning.
Hardware implementation for reward‐modulated spike‐timing‐dependent plasticity (R‐STDP) is demonstrated with a unique 2T synaptic cell structure, which realizes the functions of both STDP and anti‐STDP using a simple hardware structure. The total synaptic weight is increased (decreased) by applying feedback signal to gate1 or gate2 when, respectively, a positive or negative reward signal comes.</description><subject>2D semiconductors</subject><subject>Circuit design</subject><subject>CMOS</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Hardware</subject><subject>Learning</subject><subject>Materials science</subject><subject>Neural networks</subject><subject>Power consumption</subject><subject>Reconfiguration</subject><subject>reinforcement learning</subject><subject>reward‐modulated spike‐timing‐dependent plasticity</subject><subject>Semiconductor devices</subject><subject>synaptic device</subject><subject>Transistors</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkMtKw0AYhQdRsFa3rgNu3KTOPTPLUK9QEduKy2EmmZQpySRmGkp3PoLP6JM4peLC1eH_-Th8HAAuEZwgCPGNLhs9wRAjmGWMHoERYhilFEp2DEZQEpZKTsUpOAthDSGUHPIReM2TuS1aX7nV0GtT22S5bb8_v94XFsdY9toHFzZtnyx2XncbVyRTW9dJFT9z63zMwjbWb5KZ1b13fnUOTipdB3vxm2Pwdn-3nD6ms5eHp2k-SzvMOU2Z4YjRiiIuNeaaVjzjWUEIMgQSxpkQJSsRL602HJPoqo2BuCDcMGGozsgYXB96u779GGzYqMaFIrppb9shKMwxlQyKDEX06h-6bofeRzuFM4olEYKJSMkDtXW13amud43udwpBtZ9X7edVf_Oq_PY5_7vID-XycPo</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Zhou, Yue</creator><creator>Wang, Yasai</creator><creator>Zhuge, Fuwei</creator><creator>Guo, Jianmiao</creator><creator>Ma, Sijie</creator><creator>Wang, Jingli</creator><creator>Tang, Zijian</creator><creator>Li, Yi</creator><creator>Miao, Xiangshui</creator><creator>He, Yuhui</creator><creator>Chai, Yang</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8943-0861</orcidid></search><sort><creationdate>20221201</creationdate><title>A Reconfigurable Two‐WSe2‐Transistor Synaptic Cell for Reinforcement Learning</title><author>Zhou, Yue ; Wang, Yasai ; Zhuge, Fuwei ; Guo, Jianmiao ; Ma, Sijie ; Wang, Jingli ; Tang, Zijian ; Li, Yi ; Miao, Xiangshui ; He, Yuhui ; Chai, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2664-5b6154f4169a26a4f6767c331b30356588d5d16deab623606abb02c36b58b4a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>2D semiconductors</topic><topic>Circuit design</topic><topic>CMOS</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Hardware</topic><topic>Learning</topic><topic>Materials science</topic><topic>Neural networks</topic><topic>Power consumption</topic><topic>Reconfiguration</topic><topic>reinforcement learning</topic><topic>reward‐modulated spike‐timing‐dependent plasticity</topic><topic>Semiconductor devices</topic><topic>synaptic device</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yue</creatorcontrib><creatorcontrib>Wang, Yasai</creatorcontrib><creatorcontrib>Zhuge, Fuwei</creatorcontrib><creatorcontrib>Guo, Jianmiao</creatorcontrib><creatorcontrib>Ma, Sijie</creatorcontrib><creatorcontrib>Wang, Jingli</creatorcontrib><creatorcontrib>Tang, Zijian</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Miao, Xiangshui</creatorcontrib><creatorcontrib>He, Yuhui</creatorcontrib><creatorcontrib>Chai, Yang</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yue</au><au>Wang, Yasai</au><au>Zhuge, Fuwei</au><au>Guo, Jianmiao</au><au>Ma, Sijie</au><au>Wang, Jingli</au><au>Tang, Zijian</au><au>Li, Yi</au><au>Miao, Xiangshui</au><au>He, Yuhui</au><au>Chai, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Reconfigurable Two‐WSe2‐Transistor Synaptic Cell for Reinforcement Learning</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>34</volume><issue>48</issue><spage>e2107754</spage><epage>n/a</epage><pages>e2107754-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Reward‐modulated spike‐timing‐dependent plasticity (R‐STDP) is a brain‐inspired reinforcement learning (RL) rule, exhibiting potential for decision‐making tasks and artificial general intelligence. However, the hardware implementation of the reward‐modulation process in R‐STDP usually requires complicated Si complementary metal–oxide–semiconductor (CMOS) circuit design that causes high power consumption and large footprint. Here, a design with two synaptic transistors (2T) connected in a parallel structure is experimentally demonstrated. The 2T unit based on WSe2 ferroelectric transistors exhibits reconfigurable polarity behavior, where one channel can be tuned as n‐type and the other as p‐type due to nonvolatile ferroelectric polarization. In this way, opposite synaptic weight update behaviors with multilevel (>6 bit) conductance states, ultralow nonlinearity (0.56/−1.23), and large Gmax/Gmin ratio of 30 are realized. By applying positive/negative reward to (anti‐)STDP component of 2T cell, R‐STDP learning rules are realized for training the spiking neural network and demonstrated to solve the classical cart–pole problem, exhibiting a way for realizing low‐power (32 pJ per forward process) and highly area‐efficient (100 µm2) hardware chip for reinforcement learning.
Hardware implementation for reward‐modulated spike‐timing‐dependent plasticity (R‐STDP) is demonstrated with a unique 2T synaptic cell structure, which realizes the functions of both STDP and anti‐STDP using a simple hardware structure. The total synaptic weight is increased (decreased) by applying feedback signal to gate1 or gate2 when, respectively, a positive or negative reward signal comes.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202107754</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8943-0861</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2022-12, Vol.34 (48), p.e2107754-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2624950871 |
source | Wiley Online Library All Journals |
subjects | 2D semiconductors Circuit design CMOS Ferroelectric materials Ferroelectricity Hardware Learning Materials science Neural networks Power consumption Reconfiguration reinforcement learning reward‐modulated spike‐timing‐dependent plasticity Semiconductor devices synaptic device Transistors |
title | A Reconfigurable Two‐WSe2‐Transistor Synaptic Cell for Reinforcement Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A50%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Reconfigurable%20Two%E2%80%90WSe2%E2%80%90Transistor%20Synaptic%20Cell%20for%20Reinforcement%20Learning&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zhou,%20Yue&rft.date=2022-12-01&rft.volume=34&rft.issue=48&rft.spage=e2107754&rft.epage=n/a&rft.pages=e2107754-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202107754&rft_dat=%3Cproquest_wiley%3E2742938858%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2742938858&rft_id=info:pmid/&rfr_iscdi=true |