Ultra‐Stretchable and Fast Self‐Healing Ionic Hydrogel in Cryogenic Environments for Artificial Nerve Fiber
Self‐healing materials behave with irreplaceable advantages in biomimetic intelligent robots (BIR) for avoiding or reducing safety hazards and economic losses from accidental damage during service. However, the self‐healing ability is unreservedly lost and even becomes rigid and fragile in the cryog...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2022-04, Vol.34 (16), p.e2105416-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 16 |
container_start_page | e2105416 |
container_title | Advanced materials (Weinheim) |
container_volume | 34 |
creator | Wang, Chan Liu, Ying Qu, Xuecheng Shi, Bojing Zheng, Qiang Lin, Xubo Chao, Shengyu Wang, Changyong Zhou, Jin Sun, Yu Mao, Gengsheng Li, Zhou |
description | Self‐healing materials behave with irreplaceable advantages in biomimetic intelligent robots (BIR) for avoiding or reducing safety hazards and economic losses from accidental damage during service. However, the self‐healing ability is unreservedly lost and even becomes rigid and fragile in the cryogenic environment where BIR are precisely needed. Here, the authors report a versatile ionic hydrogel with fast self‐healing ability, ultra‐stretchability, and stable conductivity, even at −80 °C. The hydrogel is systematically optimized to improve a hydrogen‐bonded network nanostructure, coordinated achieving a quick self‐healing ability within 10 min, large deformation tolerance of over 7000%, superior conductivity of 11.76 S cm−1 and anti‐freezing ability, which is difficult to obtain simultaneously. Such a hydrogel provides new opportunities for artificial electronic devices in harsh environments. As a prospective application, they fabricate an artificial nerve fiber by mimicking the structure and functions of the myelinated axon, exhibiting the property of fast and potential‐gated signal transmission. This artificial nerve fiber is integrated into a robot for demonstrating a real‐time high fidelity and high throughput information interaction under big deformation and cryogenic temperature. The hydrogel and bionic device will bring pioneering functions for robots and open a broad application scenario in extreme conditions.
The authors propose an ionic hydrogel with outstanding self‐healing ability, ultra‐stretchability, and conductivity in cryogenic environments. The artificial nerve fiber (SSANF) is fabricated based on the ionic hydrogel through bionic structural design. The SSANF enables stable information and energy transmission when connected to the biomimetic intelligent robot, even under big deformation and −78.5 °C. |
doi_str_mv | 10.1002/adma.202105416 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2624654057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624654057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4396-d0069673146272366e82374e9dcad690c6030c35be09dee33a4e8d319ad4ff4a3</originalsourceid><addsrcrecordid>eNqFkc9uEzEQhy0EoqFw5YgsceGyYfx342OUNqRSgUPpeeXYs8WV1y72pig3HoFn5EnYKKVIXDh55Pnm02h-hLxmMGcA_L31g51z4AyUZPoJmTHFWSPBqKdkBkaoxmi5OCEvar0FAKNBPycnQjEQQskZyddxLPbXj59XY8HRfbXbiNQmT9e2jvQKYz_1NmhjSDf0Iqfg6GbvS77BSEOiq7KfysPveboPJacB01hpnwtdljH0wQUb6Scs90jXYYvlJXnW21jx1cN7Sq7X519Wm-by84eL1fKycVIY3XgAbXQrmNS85UJrXHDRSjTeWa8NOA0CnFBbBOMRhbASF14wY73se2nFKXl39N6V_G2HdeyGUB3GaBPmXe245lIrCaqd0Lf_oLd5V9K03UQp3mq2aOVEzY-UK7nWgn13V8Jgy75j0B2i6A5RdI9RTANvHrS77YD-Ef9z-wkwR-B7iLj_j65bnn1c_pX_BuRullg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2652761874</pqid></control><display><type>article</type><title>Ultra‐Stretchable and Fast Self‐Healing Ionic Hydrogel in Cryogenic Environments for Artificial Nerve Fiber</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Chan ; Liu, Ying ; Qu, Xuecheng ; Shi, Bojing ; Zheng, Qiang ; Lin, Xubo ; Chao, Shengyu ; Wang, Changyong ; Zhou, Jin ; Sun, Yu ; Mao, Gengsheng ; Li, Zhou</creator><creatorcontrib>Wang, Chan ; Liu, Ying ; Qu, Xuecheng ; Shi, Bojing ; Zheng, Qiang ; Lin, Xubo ; Chao, Shengyu ; Wang, Changyong ; Zhou, Jin ; Sun, Yu ; Mao, Gengsheng ; Li, Zhou</creatorcontrib><description>Self‐healing materials behave with irreplaceable advantages in biomimetic intelligent robots (BIR) for avoiding or reducing safety hazards and economic losses from accidental damage during service. However, the self‐healing ability is unreservedly lost and even becomes rigid and fragile in the cryogenic environment where BIR are precisely needed. Here, the authors report a versatile ionic hydrogel with fast self‐healing ability, ultra‐stretchability, and stable conductivity, even at −80 °C. The hydrogel is systematically optimized to improve a hydrogen‐bonded network nanostructure, coordinated achieving a quick self‐healing ability within 10 min, large deformation tolerance of over 7000%, superior conductivity of 11.76 S cm−1 and anti‐freezing ability, which is difficult to obtain simultaneously. Such a hydrogel provides new opportunities for artificial electronic devices in harsh environments. As a prospective application, they fabricate an artificial nerve fiber by mimicking the structure and functions of the myelinated axon, exhibiting the property of fast and potential‐gated signal transmission. This artificial nerve fiber is integrated into a robot for demonstrating a real‐time high fidelity and high throughput information interaction under big deformation and cryogenic temperature. The hydrogel and bionic device will bring pioneering functions for robots and open a broad application scenario in extreme conditions.
The authors propose an ionic hydrogel with outstanding self‐healing ability, ultra‐stretchability, and conductivity in cryogenic environments. The artificial nerve fiber (SSANF) is fabricated based on the ionic hydrogel through bionic structural design. The SSANF enables stable information and energy transmission when connected to the biomimetic intelligent robot, even under big deformation and −78.5 °C.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202105416</identifier><identifier>PMID: 35103354</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>anti‐freezing ; artificial nerve fibers ; Biomimetic materials ; Bionics ; Cryogenic temperature ; Deformation ; Economic impact ; Electric Conductivity ; Electronic devices ; Electronics ; Freezing ; Hazard mitigation ; Healing ; Hydrogels ; Hydrogels - chemistry ; Ions ; Materials science ; Nerve Fibers ; Nerves ; Robots ; self‐healing ionic hydrogels ; Signal transmission ; Stretchability ; ultra‐stretchability</subject><ispartof>Advanced materials (Weinheim), 2022-04, Vol.34 (16), p.e2105416-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4396-d0069673146272366e82374e9dcad690c6030c35be09dee33a4e8d319ad4ff4a3</citedby><cites>FETCH-LOGICAL-c4396-d0069673146272366e82374e9dcad690c6030c35be09dee33a4e8d319ad4ff4a3</cites><orcidid>0000-0002-9952-7296</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202105416$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202105416$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35103354$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Chan</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Qu, Xuecheng</creatorcontrib><creatorcontrib>Shi, Bojing</creatorcontrib><creatorcontrib>Zheng, Qiang</creatorcontrib><creatorcontrib>Lin, Xubo</creatorcontrib><creatorcontrib>Chao, Shengyu</creatorcontrib><creatorcontrib>Wang, Changyong</creatorcontrib><creatorcontrib>Zhou, Jin</creatorcontrib><creatorcontrib>Sun, Yu</creatorcontrib><creatorcontrib>Mao, Gengsheng</creatorcontrib><creatorcontrib>Li, Zhou</creatorcontrib><title>Ultra‐Stretchable and Fast Self‐Healing Ionic Hydrogel in Cryogenic Environments for Artificial Nerve Fiber</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Self‐healing materials behave with irreplaceable advantages in biomimetic intelligent robots (BIR) for avoiding or reducing safety hazards and economic losses from accidental damage during service. However, the self‐healing ability is unreservedly lost and even becomes rigid and fragile in the cryogenic environment where BIR are precisely needed. Here, the authors report a versatile ionic hydrogel with fast self‐healing ability, ultra‐stretchability, and stable conductivity, even at −80 °C. The hydrogel is systematically optimized to improve a hydrogen‐bonded network nanostructure, coordinated achieving a quick self‐healing ability within 10 min, large deformation tolerance of over 7000%, superior conductivity of 11.76 S cm−1 and anti‐freezing ability, which is difficult to obtain simultaneously. Such a hydrogel provides new opportunities for artificial electronic devices in harsh environments. As a prospective application, they fabricate an artificial nerve fiber by mimicking the structure and functions of the myelinated axon, exhibiting the property of fast and potential‐gated signal transmission. This artificial nerve fiber is integrated into a robot for demonstrating a real‐time high fidelity and high throughput information interaction under big deformation and cryogenic temperature. The hydrogel and bionic device will bring pioneering functions for robots and open a broad application scenario in extreme conditions.
The authors propose an ionic hydrogel with outstanding self‐healing ability, ultra‐stretchability, and conductivity in cryogenic environments. The artificial nerve fiber (SSANF) is fabricated based on the ionic hydrogel through bionic structural design. The SSANF enables stable information and energy transmission when connected to the biomimetic intelligent robot, even under big deformation and −78.5 °C.</description><subject>anti‐freezing</subject><subject>artificial nerve fibers</subject><subject>Biomimetic materials</subject><subject>Bionics</subject><subject>Cryogenic temperature</subject><subject>Deformation</subject><subject>Economic impact</subject><subject>Electric Conductivity</subject><subject>Electronic devices</subject><subject>Electronics</subject><subject>Freezing</subject><subject>Hazard mitigation</subject><subject>Healing</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Ions</subject><subject>Materials science</subject><subject>Nerve Fibers</subject><subject>Nerves</subject><subject>Robots</subject><subject>self‐healing ionic hydrogels</subject><subject>Signal transmission</subject><subject>Stretchability</subject><subject>ultra‐stretchability</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9uEzEQhy0EoqFw5YgsceGyYfx342OUNqRSgUPpeeXYs8WV1y72pig3HoFn5EnYKKVIXDh55Pnm02h-hLxmMGcA_L31g51z4AyUZPoJmTHFWSPBqKdkBkaoxmi5OCEvar0FAKNBPycnQjEQQskZyddxLPbXj59XY8HRfbXbiNQmT9e2jvQKYz_1NmhjSDf0Iqfg6GbvS77BSEOiq7KfysPveboPJacB01hpnwtdljH0wQUb6Scs90jXYYvlJXnW21jx1cN7Sq7X519Wm-by84eL1fKycVIY3XgAbXQrmNS85UJrXHDRSjTeWa8NOA0CnFBbBOMRhbASF14wY73se2nFKXl39N6V_G2HdeyGUB3GaBPmXe245lIrCaqd0Lf_oLd5V9K03UQp3mq2aOVEzY-UK7nWgn13V8Jgy75j0B2i6A5RdI9RTANvHrS77YD-Ef9z-wkwR-B7iLj_j65bnn1c_pX_BuRullg</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Wang, Chan</creator><creator>Liu, Ying</creator><creator>Qu, Xuecheng</creator><creator>Shi, Bojing</creator><creator>Zheng, Qiang</creator><creator>Lin, Xubo</creator><creator>Chao, Shengyu</creator><creator>Wang, Changyong</creator><creator>Zhou, Jin</creator><creator>Sun, Yu</creator><creator>Mao, Gengsheng</creator><creator>Li, Zhou</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9952-7296</orcidid></search><sort><creationdate>20220401</creationdate><title>Ultra‐Stretchable and Fast Self‐Healing Ionic Hydrogel in Cryogenic Environments for Artificial Nerve Fiber</title><author>Wang, Chan ; Liu, Ying ; Qu, Xuecheng ; Shi, Bojing ; Zheng, Qiang ; Lin, Xubo ; Chao, Shengyu ; Wang, Changyong ; Zhou, Jin ; Sun, Yu ; Mao, Gengsheng ; Li, Zhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4396-d0069673146272366e82374e9dcad690c6030c35be09dee33a4e8d319ad4ff4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>anti‐freezing</topic><topic>artificial nerve fibers</topic><topic>Biomimetic materials</topic><topic>Bionics</topic><topic>Cryogenic temperature</topic><topic>Deformation</topic><topic>Economic impact</topic><topic>Electric Conductivity</topic><topic>Electronic devices</topic><topic>Electronics</topic><topic>Freezing</topic><topic>Hazard mitigation</topic><topic>Healing</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Ions</topic><topic>Materials science</topic><topic>Nerve Fibers</topic><topic>Nerves</topic><topic>Robots</topic><topic>self‐healing ionic hydrogels</topic><topic>Signal transmission</topic><topic>Stretchability</topic><topic>ultra‐stretchability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chan</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Qu, Xuecheng</creatorcontrib><creatorcontrib>Shi, Bojing</creatorcontrib><creatorcontrib>Zheng, Qiang</creatorcontrib><creatorcontrib>Lin, Xubo</creatorcontrib><creatorcontrib>Chao, Shengyu</creatorcontrib><creatorcontrib>Wang, Changyong</creatorcontrib><creatorcontrib>Zhou, Jin</creatorcontrib><creatorcontrib>Sun, Yu</creatorcontrib><creatorcontrib>Mao, Gengsheng</creatorcontrib><creatorcontrib>Li, Zhou</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chan</au><au>Liu, Ying</au><au>Qu, Xuecheng</au><au>Shi, Bojing</au><au>Zheng, Qiang</au><au>Lin, Xubo</au><au>Chao, Shengyu</au><au>Wang, Changyong</au><au>Zhou, Jin</au><au>Sun, Yu</au><au>Mao, Gengsheng</au><au>Li, Zhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra‐Stretchable and Fast Self‐Healing Ionic Hydrogel in Cryogenic Environments for Artificial Nerve Fiber</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>34</volume><issue>16</issue><spage>e2105416</spage><epage>n/a</epage><pages>e2105416-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Self‐healing materials behave with irreplaceable advantages in biomimetic intelligent robots (BIR) for avoiding or reducing safety hazards and economic losses from accidental damage during service. However, the self‐healing ability is unreservedly lost and even becomes rigid and fragile in the cryogenic environment where BIR are precisely needed. Here, the authors report a versatile ionic hydrogel with fast self‐healing ability, ultra‐stretchability, and stable conductivity, even at −80 °C. The hydrogel is systematically optimized to improve a hydrogen‐bonded network nanostructure, coordinated achieving a quick self‐healing ability within 10 min, large deformation tolerance of over 7000%, superior conductivity of 11.76 S cm−1 and anti‐freezing ability, which is difficult to obtain simultaneously. Such a hydrogel provides new opportunities for artificial electronic devices in harsh environments. As a prospective application, they fabricate an artificial nerve fiber by mimicking the structure and functions of the myelinated axon, exhibiting the property of fast and potential‐gated signal transmission. This artificial nerve fiber is integrated into a robot for demonstrating a real‐time high fidelity and high throughput information interaction under big deformation and cryogenic temperature. The hydrogel and bionic device will bring pioneering functions for robots and open a broad application scenario in extreme conditions.
The authors propose an ionic hydrogel with outstanding self‐healing ability, ultra‐stretchability, and conductivity in cryogenic environments. The artificial nerve fiber (SSANF) is fabricated based on the ionic hydrogel through bionic structural design. The SSANF enables stable information and energy transmission when connected to the biomimetic intelligent robot, even under big deformation and −78.5 °C.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35103354</pmid><doi>10.1002/adma.202105416</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9952-7296</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2022-04, Vol.34 (16), p.e2105416-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2624654057 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | anti‐freezing artificial nerve fibers Biomimetic materials Bionics Cryogenic temperature Deformation Economic impact Electric Conductivity Electronic devices Electronics Freezing Hazard mitigation Healing Hydrogels Hydrogels - chemistry Ions Materials science Nerve Fibers Nerves Robots self‐healing ionic hydrogels Signal transmission Stretchability ultra‐stretchability |
title | Ultra‐Stretchable and Fast Self‐Healing Ionic Hydrogel in Cryogenic Environments for Artificial Nerve Fiber |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A26%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra%E2%80%90Stretchable%20and%20Fast%20Self%E2%80%90Healing%20Ionic%20Hydrogel%20in%20Cryogenic%20Environments%20for%20Artificial%20Nerve%20Fiber&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Wang,%20Chan&rft.date=2022-04-01&rft.volume=34&rft.issue=16&rft.spage=e2105416&rft.epage=n/a&rft.pages=e2105416-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202105416&rft_dat=%3Cproquest_cross%3E2624654057%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2652761874&rft_id=info:pmid/35103354&rfr_iscdi=true |