Vascular traits of stem galls: Cell increment versus morphogenetic constraints in wood anatomy

Eremanthus erythropappus hosts globoid stem galls induced by Neolasioptera sp. (Diptera: Cecidomyiidae) close to the stem apex, which do not compromise the shoot apical meristem (SAM). We hypothesize that maintenance of the SAM, as well as the increasing number of leaves per branch and of galled ste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant biology (Stuttgart, Germany) Germany), 2022-04, Vol.24 (3), p.450-457
Hauptverfasser: Jorge, N. d. C., Freitas, M. d. S. C., Caffaro, R. M., Vale, F. H. A., Lemos‐Filho, J. P., Isaias, R. M. d. S., Martinez‐Medina, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 457
container_issue 3
container_start_page 450
container_title Plant biology (Stuttgart, Germany)
container_volume 24
creator Jorge, N. d. C.
Freitas, M. d. S. C.
Caffaro, R. M.
Vale, F. H. A.
Lemos‐Filho, J. P.
Isaias, R. M. d. S.
Martinez‐Medina, A.
description Eremanthus erythropappus hosts globoid stem galls induced by Neolasioptera sp. (Diptera: Cecidomyiidae) close to the stem apex, which do not compromise the shoot apical meristem (SAM). We hypothesize that maintenance of the SAM, as well as the increasing number of leaves per branch and of galled stem lengths and diameters, are a consequence of alterations in vascular cells and, consequently, in the priority for water flow from non‐galled stems to the stem galls. Our study focuses on the globoid stem galls to evaluate if gall induction and development promote changes in structure and function of secondary xylem cells. Anatomical, cytological, histometric and physiological methods were used to analyse non‐galled stem branches (NGS), mature globoid stem galls and stem portions below and above the galls. These analyses revealed that vessel elements are larger in stem galls and in stem portions above the galls. Under Neolasioptera sp. induction activity, the vascular cambium of E. erythropappus produces less numerous but larger vessel elements and overproduces parenchyma cells. Contrary to the vascular constriction hypothesis proposed for bacterial galls, the vascular traits of the Neolasioptera sp. stem galls on E. erythropappus result in priority for water flow to galls and the non‐galled portions above the galls, allowing the maintenance of galled stem growth and development. The anatomical alterations induced by gall formation promote a higher water supply to galls and to the non‐galled regions above the stem galls, prioritizing the galled stem development.
doi_str_mv 10.1111/plb.13392
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2624193841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624193841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3532-7269cde2361211b6e6c765ea636191f44297026f7d5e0747080d8cc240c865513</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EoqWw4AeQJTawSOtH4iTsoOIlVYIFsCRynUlJldjBTqj697hNYYHEbGY0OnPn6iJ0SsmY-po01XxMOU_ZHhrSkCdBIuJ4fztHfiZ8gI6cWxJCw5TQQzTgEUkTwdkQvb9Jp7pKWtxaWbYOmwK7Fmq8kFXlrvAUqgqXWlmoQbf4C6zrHK6NbT7MAjS0pcLKaLe51v681HhlTI6llq2p18fooJCVg5NdH6HXu9uX6UMwe7p_nF7PAsUjzoKYiVTlwLigjNK5AKFiEYEUfpHSIgxZGhMmijiPgMRhTBKSJ0qxkKhERBHlI3TR6zbWfHbg2qwunfLepQbTuYwJFtKUJ-EGPf-DLk1ntXfnKf-IE05ST132lLLGOQtF1tiylnadUZJtQs986Nk2dM-e7RS7eQ35L_mTsgcmPbAqK1j_r5Q9z256yW_iHYn6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642930309</pqid></control><display><type>article</type><title>Vascular traits of stem galls: Cell increment versus morphogenetic constraints in wood anatomy</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jorge, N. d. C. ; Freitas, M. d. S. C. ; Caffaro, R. M. ; Vale, F. H. A. ; Lemos‐Filho, J. P. ; Isaias, R. M. d. S. ; Martinez‐Medina, A.</creator><contributor>Martinez‐Medina, A.</contributor><creatorcontrib>Jorge, N. d. C. ; Freitas, M. d. S. C. ; Caffaro, R. M. ; Vale, F. H. A. ; Lemos‐Filho, J. P. ; Isaias, R. M. d. S. ; Martinez‐Medina, A. ; Martinez‐Medina, A.</creatorcontrib><description>Eremanthus erythropappus hosts globoid stem galls induced by Neolasioptera sp. (Diptera: Cecidomyiidae) close to the stem apex, which do not compromise the shoot apical meristem (SAM). We hypothesize that maintenance of the SAM, as well as the increasing number of leaves per branch and of galled stem lengths and diameters, are a consequence of alterations in vascular cells and, consequently, in the priority for water flow from non‐galled stems to the stem galls. Our study focuses on the globoid stem galls to evaluate if gall induction and development promote changes in structure and function of secondary xylem cells. Anatomical, cytological, histometric and physiological methods were used to analyse non‐galled stem branches (NGS), mature globoid stem galls and stem portions below and above the galls. These analyses revealed that vessel elements are larger in stem galls and in stem portions above the galls. Under Neolasioptera sp. induction activity, the vascular cambium of E. erythropappus produces less numerous but larger vessel elements and overproduces parenchyma cells. Contrary to the vascular constriction hypothesis proposed for bacterial galls, the vascular traits of the Neolasioptera sp. stem galls on E. erythropappus result in priority for water flow to galls and the non‐galled portions above the galls, allowing the maintenance of galled stem growth and development. The anatomical alterations induced by gall formation promote a higher water supply to galls and to the non‐galled regions above the stem galls, prioritizing the galled stem development.</description><identifier>ISSN: 1435-8603</identifier><identifier>EISSN: 1438-8677</identifier><identifier>DOI: 10.1111/plb.13392</identifier><identifier>PMID: 35098632</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Animals ; Asteraceae ; Auxin ; Candeia ; Diptera ; Eremanthus erythropappus ; Galls ; Maintenance ; Meristem ; Meristems ; Neolasioptera ; Parenchyma ; Plant Leaves ; Plant Tumors ; Stems ; Structure-function relationships ; vessel elements ; Water flow ; water relations ; Wood ; Xylem</subject><ispartof>Plant biology (Stuttgart, Germany), 2022-04, Vol.24 (3), p.450-457</ispartof><rights>2022 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands</rights><rights>2022 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3532-7269cde2361211b6e6c765ea636191f44297026f7d5e0747080d8cc240c865513</citedby><cites>FETCH-LOGICAL-c3532-7269cde2361211b6e6c765ea636191f44297026f7d5e0747080d8cc240c865513</cites><orcidid>0000-0001-7712-435X ; 0000-0001-8500-3320 ; 0000-0002-1278-686X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fplb.13392$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fplb.13392$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35098632$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Martinez‐Medina, A.</contributor><creatorcontrib>Jorge, N. d. C.</creatorcontrib><creatorcontrib>Freitas, M. d. S. C.</creatorcontrib><creatorcontrib>Caffaro, R. M.</creatorcontrib><creatorcontrib>Vale, F. H. A.</creatorcontrib><creatorcontrib>Lemos‐Filho, J. P.</creatorcontrib><creatorcontrib>Isaias, R. M. d. S.</creatorcontrib><creatorcontrib>Martinez‐Medina, A.</creatorcontrib><title>Vascular traits of stem galls: Cell increment versus morphogenetic constraints in wood anatomy</title><title>Plant biology (Stuttgart, Germany)</title><addtitle>Plant Biol (Stuttg)</addtitle><description>Eremanthus erythropappus hosts globoid stem galls induced by Neolasioptera sp. (Diptera: Cecidomyiidae) close to the stem apex, which do not compromise the shoot apical meristem (SAM). We hypothesize that maintenance of the SAM, as well as the increasing number of leaves per branch and of galled stem lengths and diameters, are a consequence of alterations in vascular cells and, consequently, in the priority for water flow from non‐galled stems to the stem galls. Our study focuses on the globoid stem galls to evaluate if gall induction and development promote changes in structure and function of secondary xylem cells. Anatomical, cytological, histometric and physiological methods were used to analyse non‐galled stem branches (NGS), mature globoid stem galls and stem portions below and above the galls. These analyses revealed that vessel elements are larger in stem galls and in stem portions above the galls. Under Neolasioptera sp. induction activity, the vascular cambium of E. erythropappus produces less numerous but larger vessel elements and overproduces parenchyma cells. Contrary to the vascular constriction hypothesis proposed for bacterial galls, the vascular traits of the Neolasioptera sp. stem galls on E. erythropappus result in priority for water flow to galls and the non‐galled portions above the galls, allowing the maintenance of galled stem growth and development. The anatomical alterations induced by gall formation promote a higher water supply to galls and to the non‐galled regions above the stem galls, prioritizing the galled stem development.</description><subject>Animals</subject><subject>Asteraceae</subject><subject>Auxin</subject><subject>Candeia</subject><subject>Diptera</subject><subject>Eremanthus erythropappus</subject><subject>Galls</subject><subject>Maintenance</subject><subject>Meristem</subject><subject>Meristems</subject><subject>Neolasioptera</subject><subject>Parenchyma</subject><subject>Plant Leaves</subject><subject>Plant Tumors</subject><subject>Stems</subject><subject>Structure-function relationships</subject><subject>vessel elements</subject><subject>Water flow</subject><subject>water relations</subject><subject>Wood</subject><subject>Xylem</subject><issn>1435-8603</issn><issn>1438-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMtOwzAQRS0EoqWw4AeQJTawSOtH4iTsoOIlVYIFsCRynUlJldjBTqj697hNYYHEbGY0OnPn6iJ0SsmY-po01XxMOU_ZHhrSkCdBIuJ4fztHfiZ8gI6cWxJCw5TQQzTgEUkTwdkQvb9Jp7pKWtxaWbYOmwK7Fmq8kFXlrvAUqgqXWlmoQbf4C6zrHK6NbT7MAjS0pcLKaLe51v681HhlTI6llq2p18fooJCVg5NdH6HXu9uX6UMwe7p_nF7PAsUjzoKYiVTlwLigjNK5AKFiEYEUfpHSIgxZGhMmijiPgMRhTBKSJ0qxkKhERBHlI3TR6zbWfHbg2qwunfLepQbTuYwJFtKUJ-EGPf-DLk1ntXfnKf-IE05ST132lLLGOQtF1tiylnadUZJtQs986Nk2dM-e7RS7eQ35L_mTsgcmPbAqK1j_r5Q9z256yW_iHYn6</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Jorge, N. d. C.</creator><creator>Freitas, M. d. S. C.</creator><creator>Caffaro, R. M.</creator><creator>Vale, F. H. A.</creator><creator>Lemos‐Filho, J. P.</creator><creator>Isaias, R. M. d. S.</creator><creator>Martinez‐Medina, A.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7712-435X</orcidid><orcidid>https://orcid.org/0000-0001-8500-3320</orcidid><orcidid>https://orcid.org/0000-0002-1278-686X</orcidid></search><sort><creationdate>202204</creationdate><title>Vascular traits of stem galls: Cell increment versus morphogenetic constraints in wood anatomy</title><author>Jorge, N. d. C. ; Freitas, M. d. S. C. ; Caffaro, R. M. ; Vale, F. H. A. ; Lemos‐Filho, J. P. ; Isaias, R. M. d. S. ; Martinez‐Medina, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3532-7269cde2361211b6e6c765ea636191f44297026f7d5e0747080d8cc240c865513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Asteraceae</topic><topic>Auxin</topic><topic>Candeia</topic><topic>Diptera</topic><topic>Eremanthus erythropappus</topic><topic>Galls</topic><topic>Maintenance</topic><topic>Meristem</topic><topic>Meristems</topic><topic>Neolasioptera</topic><topic>Parenchyma</topic><topic>Plant Leaves</topic><topic>Plant Tumors</topic><topic>Stems</topic><topic>Structure-function relationships</topic><topic>vessel elements</topic><topic>Water flow</topic><topic>water relations</topic><topic>Wood</topic><topic>Xylem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jorge, N. d. C.</creatorcontrib><creatorcontrib>Freitas, M. d. S. C.</creatorcontrib><creatorcontrib>Caffaro, R. M.</creatorcontrib><creatorcontrib>Vale, F. H. A.</creatorcontrib><creatorcontrib>Lemos‐Filho, J. P.</creatorcontrib><creatorcontrib>Isaias, R. M. d. S.</creatorcontrib><creatorcontrib>Martinez‐Medina, A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Plant biology (Stuttgart, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jorge, N. d. C.</au><au>Freitas, M. d. S. C.</au><au>Caffaro, R. M.</au><au>Vale, F. H. A.</au><au>Lemos‐Filho, J. P.</au><au>Isaias, R. M. d. S.</au><au>Martinez‐Medina, A.</au><au>Martinez‐Medina, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vascular traits of stem galls: Cell increment versus morphogenetic constraints in wood anatomy</atitle><jtitle>Plant biology (Stuttgart, Germany)</jtitle><addtitle>Plant Biol (Stuttg)</addtitle><date>2022-04</date><risdate>2022</risdate><volume>24</volume><issue>3</issue><spage>450</spage><epage>457</epage><pages>450-457</pages><issn>1435-8603</issn><eissn>1438-8677</eissn><abstract>Eremanthus erythropappus hosts globoid stem galls induced by Neolasioptera sp. (Diptera: Cecidomyiidae) close to the stem apex, which do not compromise the shoot apical meristem (SAM). We hypothesize that maintenance of the SAM, as well as the increasing number of leaves per branch and of galled stem lengths and diameters, are a consequence of alterations in vascular cells and, consequently, in the priority for water flow from non‐galled stems to the stem galls. Our study focuses on the globoid stem galls to evaluate if gall induction and development promote changes in structure and function of secondary xylem cells. Anatomical, cytological, histometric and physiological methods were used to analyse non‐galled stem branches (NGS), mature globoid stem galls and stem portions below and above the galls. These analyses revealed that vessel elements are larger in stem galls and in stem portions above the galls. Under Neolasioptera sp. induction activity, the vascular cambium of E. erythropappus produces less numerous but larger vessel elements and overproduces parenchyma cells. Contrary to the vascular constriction hypothesis proposed for bacterial galls, the vascular traits of the Neolasioptera sp. stem galls on E. erythropappus result in priority for water flow to galls and the non‐galled portions above the galls, allowing the maintenance of galled stem growth and development. The anatomical alterations induced by gall formation promote a higher water supply to galls and to the non‐galled regions above the stem galls, prioritizing the galled stem development.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35098632</pmid><doi>10.1111/plb.13392</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7712-435X</orcidid><orcidid>https://orcid.org/0000-0001-8500-3320</orcidid><orcidid>https://orcid.org/0000-0002-1278-686X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1435-8603
ispartof Plant biology (Stuttgart, Germany), 2022-04, Vol.24 (3), p.450-457
issn 1435-8603
1438-8677
language eng
recordid cdi_proquest_miscellaneous_2624193841
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Asteraceae
Auxin
Candeia
Diptera
Eremanthus erythropappus
Galls
Maintenance
Meristem
Meristems
Neolasioptera
Parenchyma
Plant Leaves
Plant Tumors
Stems
Structure-function relationships
vessel elements
Water flow
water relations
Wood
Xylem
title Vascular traits of stem galls: Cell increment versus morphogenetic constraints in wood anatomy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A08%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vascular%20traits%20of%20stem%20galls:%20Cell%20increment%20versus%20morphogenetic%20constraints%20in%20wood%20anatomy&rft.jtitle=Plant%20biology%20(Stuttgart,%20Germany)&rft.au=Jorge,%20N.%20d.%20C.&rft.date=2022-04&rft.volume=24&rft.issue=3&rft.spage=450&rft.epage=457&rft.pages=450-457&rft.issn=1435-8603&rft.eissn=1438-8677&rft_id=info:doi/10.1111/plb.13392&rft_dat=%3Cproquest_cross%3E2624193841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2642930309&rft_id=info:pmid/35098632&rfr_iscdi=true