Post-translational activation of CBF for inducing freezing tolerance

Plants can acquire increased freezing tolerance through cold-acclimation involving the ICE1-CBF-COR pathway. Recently, Lee et al. investigated a potential link between the functional activation of CBF and cellular redox state. We propose that redox-mediated CBF activation could be a hub of low tempe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trends in plant science 2022-05, Vol.27 (5), p.415-417
Hauptverfasser: Kopeć, Przemysław, Rapacz, Marcin, Arora, Rajeev
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 417
container_issue 5
container_start_page 415
container_title Trends in plant science
container_volume 27
creator Kopeć, Przemysław
Rapacz, Marcin
Arora, Rajeev
description Plants can acquire increased freezing tolerance through cold-acclimation involving the ICE1-CBF-COR pathway. Recently, Lee et al. investigated a potential link between the functional activation of CBF and cellular redox state. We propose that redox-mediated CBF activation could be a hub of low temperature as well as light signaling in the cold-acclimation process.
doi_str_mv 10.1016/j.tplants.2022.01.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2623893566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1360138522000036</els_id><sourcerecordid>2669099288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-e1917aafafbf3780290ab7a09f9f1b5b43be718b385f33e87514552e54f9fe8e3</originalsourceid><addsrcrecordid>eNqFkLFu2zAQhokgRey4eYQUArp0kXokTYmcgsSt2wIGkiGdCUo-FjRk0SEpA83Th66dDF0y3R3w_cfjR8g1hYoCrb9uqrTrzZBixYCxCmgFwM_IlMpGlnPesPPc8xpKyqWYkMsYNwDQUFlfkAkXoEBSOSXfHnxMZQpmiL1Jzg-mL0yX3P7fUHhbLO6WhfWhcMN67Nzwp7AB8fnQJN9jDnb4kXywpo94daoz8nv5_XHxs1zd__i1uF2VHVc8lUgVbYyxxraWNxKYAtM2BpRVlrainfMW84FtPthyjrIRdC4EQzHPAErkM_LluHcX_NOIMemtix322QP6MWpWMy4VF3Wd0c__oRs_hvy7A1UrUIpJmSlxpLrgYwxo9S64rQl_NQV90Kw3-qRZHzRroDprzrlPp-1ju8X1W-rVawZujgBmHXuHQcfOYVa1dgG7pNfevfPEC-KqkHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2669099288</pqid></control><display><type>article</type><title>Post-translational activation of CBF for inducing freezing tolerance</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Kopeć, Przemysław ; Rapacz, Marcin ; Arora, Rajeev</creator><creatorcontrib>Kopeć, Przemysław ; Rapacz, Marcin ; Arora, Rajeev</creatorcontrib><description>Plants can acquire increased freezing tolerance through cold-acclimation involving the ICE1-CBF-COR pathway. Recently, Lee et al. investigated a potential link between the functional activation of CBF and cellular redox state. We propose that redox-mediated CBF activation could be a hub of low temperature as well as light signaling in the cold-acclimation process.</description><identifier>ISSN: 1360-1385</identifier><identifier>EISSN: 1878-4372</identifier><identifier>DOI: 10.1016/j.tplants.2022.01.003</identifier><identifier>PMID: 35090818</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Acclimation ; Acclimatization ; Acclimatization - physiology ; Arabidopsis - metabolism ; Arabidopsis Proteins - metabolism ; cold acclimation ; Cold Temperature ; Cold tolerance ; COR genes ; Freezing ; Gene Expression Regulation, Plant ; Low temperature ; Post-translation ; Redox properties ; redox-signaling ; ROS ; thioredoxin</subject><ispartof>Trends in plant science, 2022-05, Vol.27 (5), p.415-417</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright © 2022 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier BV May 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-e1917aafafbf3780290ab7a09f9f1b5b43be718b385f33e87514552e54f9fe8e3</citedby><cites>FETCH-LOGICAL-c393t-e1917aafafbf3780290ab7a09f9f1b5b43be718b385f33e87514552e54f9fe8e3</cites><orcidid>0000-0002-0008-4860 ; 0000-0003-1071-1159 ; 0000-0001-6357-3488</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1360138522000036$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35090818$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kopeć, Przemysław</creatorcontrib><creatorcontrib>Rapacz, Marcin</creatorcontrib><creatorcontrib>Arora, Rajeev</creatorcontrib><title>Post-translational activation of CBF for inducing freezing tolerance</title><title>Trends in plant science</title><addtitle>Trends Plant Sci</addtitle><description>Plants can acquire increased freezing tolerance through cold-acclimation involving the ICE1-CBF-COR pathway. Recently, Lee et al. investigated a potential link between the functional activation of CBF and cellular redox state. We propose that redox-mediated CBF activation could be a hub of low temperature as well as light signaling in the cold-acclimation process.</description><subject>Acclimation</subject><subject>Acclimatization</subject><subject>Acclimatization - physiology</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>cold acclimation</subject><subject>Cold Temperature</subject><subject>Cold tolerance</subject><subject>COR genes</subject><subject>Freezing</subject><subject>Gene Expression Regulation, Plant</subject><subject>Low temperature</subject><subject>Post-translation</subject><subject>Redox properties</subject><subject>redox-signaling</subject><subject>ROS</subject><subject>thioredoxin</subject><issn>1360-1385</issn><issn>1878-4372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkLFu2zAQhokgRey4eYQUArp0kXokTYmcgsSt2wIGkiGdCUo-FjRk0SEpA83Th66dDF0y3R3w_cfjR8g1hYoCrb9uqrTrzZBixYCxCmgFwM_IlMpGlnPesPPc8xpKyqWYkMsYNwDQUFlfkAkXoEBSOSXfHnxMZQpmiL1Jzg-mL0yX3P7fUHhbLO6WhfWhcMN67Nzwp7AB8fnQJN9jDnb4kXywpo94daoz8nv5_XHxs1zd__i1uF2VHVc8lUgVbYyxxraWNxKYAtM2BpRVlrainfMW84FtPthyjrIRdC4EQzHPAErkM_LluHcX_NOIMemtix322QP6MWpWMy4VF3Wd0c__oRs_hvy7A1UrUIpJmSlxpLrgYwxo9S64rQl_NQV90Kw3-qRZHzRroDprzrlPp-1ju8X1W-rVawZujgBmHXuHQcfOYVa1dgG7pNfevfPEC-KqkHA</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Kopeć, Przemysław</creator><creator>Rapacz, Marcin</creator><creator>Arora, Rajeev</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QR</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0008-4860</orcidid><orcidid>https://orcid.org/0000-0003-1071-1159</orcidid><orcidid>https://orcid.org/0000-0001-6357-3488</orcidid></search><sort><creationdate>20220501</creationdate><title>Post-translational activation of CBF for inducing freezing tolerance</title><author>Kopeć, Przemysław ; Rapacz, Marcin ; Arora, Rajeev</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-e1917aafafbf3780290ab7a09f9f1b5b43be718b385f33e87514552e54f9fe8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acclimation</topic><topic>Acclimatization</topic><topic>Acclimatization - physiology</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>cold acclimation</topic><topic>Cold Temperature</topic><topic>Cold tolerance</topic><topic>COR genes</topic><topic>Freezing</topic><topic>Gene Expression Regulation, Plant</topic><topic>Low temperature</topic><topic>Post-translation</topic><topic>Redox properties</topic><topic>redox-signaling</topic><topic>ROS</topic><topic>thioredoxin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kopeć, Przemysław</creatorcontrib><creatorcontrib>Rapacz, Marcin</creatorcontrib><creatorcontrib>Arora, Rajeev</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in plant science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kopeć, Przemysław</au><au>Rapacz, Marcin</au><au>Arora, Rajeev</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Post-translational activation of CBF for inducing freezing tolerance</atitle><jtitle>Trends in plant science</jtitle><addtitle>Trends Plant Sci</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>27</volume><issue>5</issue><spage>415</spage><epage>417</epage><pages>415-417</pages><issn>1360-1385</issn><eissn>1878-4372</eissn><abstract>Plants can acquire increased freezing tolerance through cold-acclimation involving the ICE1-CBF-COR pathway. Recently, Lee et al. investigated a potential link between the functional activation of CBF and cellular redox state. We propose that redox-mediated CBF activation could be a hub of low temperature as well as light signaling in the cold-acclimation process.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>35090818</pmid><doi>10.1016/j.tplants.2022.01.003</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0002-0008-4860</orcidid><orcidid>https://orcid.org/0000-0003-1071-1159</orcidid><orcidid>https://orcid.org/0000-0001-6357-3488</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1360-1385
ispartof Trends in plant science, 2022-05, Vol.27 (5), p.415-417
issn 1360-1385
1878-4372
language eng
recordid cdi_proquest_miscellaneous_2623893566
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Acclimation
Acclimatization
Acclimatization - physiology
Arabidopsis - metabolism
Arabidopsis Proteins - metabolism
cold acclimation
Cold Temperature
Cold tolerance
COR genes
Freezing
Gene Expression Regulation, Plant
Low temperature
Post-translation
Redox properties
redox-signaling
ROS
thioredoxin
title Post-translational activation of CBF for inducing freezing tolerance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T12%3A12%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Post-translational%20activation%20of%20CBF%20for%20inducing%20freezing%20tolerance&rft.jtitle=Trends%20in%20plant%20science&rft.au=Kope%C4%87,%20Przemys%C5%82aw&rft.date=2022-05-01&rft.volume=27&rft.issue=5&rft.spage=415&rft.epage=417&rft.pages=415-417&rft.issn=1360-1385&rft.eissn=1878-4372&rft_id=info:doi/10.1016/j.tplants.2022.01.003&rft_dat=%3Cproquest_cross%3E2669099288%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2669099288&rft_id=info:pmid/35090818&rft_els_id=S1360138522000036&rfr_iscdi=true