Virulence of the Bio-Control Fungus Purpureocillium lilacinum Against Myzus persicae (Hemiptera: Aphididae) and Spodoptera frugiperda (Lepidoptera: Noctuidae)
Eco-friendly entomopathogenic fungi are widely used to control agricultural insect pests. Purpureocillium lilacinum (Thom.) Luangsa-ard et al. (Hypocreales: Ophiocordycipitaceae) is a nematophagous fungus used for the bio-control of destructive root-knot nematodes. However, its insecticidal activiti...
Gespeichert in:
Veröffentlicht in: | Journal of economic entomology 2022-04, Vol.115 (2), p.462-473 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Eco-friendly entomopathogenic fungi are widely used to control agricultural insect pests. Purpureocillium lilacinum (Thom.) Luangsa-ard et al. (Hypocreales: Ophiocordycipitaceae) is a nematophagous fungus used for the bio-control of destructive root-knot nematodes. However, its insecticidal activities against agricultural insect pests haven't been widely studied. In this study, P. lilacinum PL-1 was isolated from soil (Hefei, China) and identified by molecular and morphological analyses. The growth rate, spore production, proteinase, and chitinase activities of the isolate were analyzed. Virulence tests against green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae) and fall armyworm (FAW), Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) were performed. The median lethal concentration (LC50) and median lethal time (LT50) against aphids (via immersion) and LT50 against FAW (via injection) were determined. FAW eggs immersed in aqueous conidia suspension were infected after 60 h. Differentially expressed genes (DEGs) in the infection of FAW larvae by P. lilacinum were analyzed by quantitative reverse transcription PCR. The significantly upregulated DEGs include FAW immune genes (antimicrobial peptides, C-type lectins, lysozymes, prophenoloxidase, and peptidoglycan recognition proteins) and fungal pathogenic genes (ligase, chitinase, and hydrophobin). Our data demonstrate that P. lilacinum can be used as an entomopathogenic fungus against agricultural insect pests. Graphical Abstract |
---|---|
ISSN: | 0022-0493 1938-291X |
DOI: | 10.1093/jee/toab270 |