Modification of the Luedeking and Piret model with a delay time parameter for biotechnological lactic acid production

Objectives To obtain a mathematical model that adequately describes the time lag between biomass generation and lactic acid production of lactic fermentations. Methods Seven experimental kinetics from other research works were studied to validate our proposal: four studies of Fungal Submerged Fermen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology letters 2022-03, Vol.44 (3), p.415-427
Hauptverfasser: Groff, M. Carla, Scaglia, Gustavo, Ortiz, Oscar A., Noriega, Sandra E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 427
container_issue 3
container_start_page 415
container_title Biotechnology letters
container_volume 44
creator Groff, M. Carla
Scaglia, Gustavo
Ortiz, Oscar A.
Noriega, Sandra E.
description Objectives To obtain a mathematical model that adequately describes the time lag between biomass generation and lactic acid production of lactic fermentations. Methods Seven experimental kinetics from other research works were studied to validate our proposal: four studies of Fungal Submerged Fermentation and three cases of Bacterial Submerged Fermentation, including the data recollected by Luedeking and Piret. Results We introduce a modification to the Luedeking and Piret model that consist in the introduction of a time delay parameter in the model, this parameter would account for the lag time that exists between the production of biomass and lactic acid. It is possible to determine this time delay in a simple way by approximating the biomass and product formation considering that they behave as a first order plus dead time system. The duration of this phenomenon, which is not described with the classical Luedeking and Piret model, is a function of microorganism physiology (ease of biomass growth), environment (nutrients) and type of inoculum. Conclusion The Luedeking and Piret with delay model applications reveal an increase of the R 2 in all cases, evidencing the quality of fit and the simplicity of the method proposed. These model would improve the accuracy of bioprocess scaling up.
doi_str_mv 10.1007/s10529-022-03227-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2623889733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2623889733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-3de7ac0a8332460260b1d9c320855dfa0fd106b063ac402cb4528f589a251a023</originalsourceid><addsrcrecordid>eNp9kcFO3DAQhq2qFSyUF-ihstQLl7RjO46TY4VaQNoKDvRsOfZk1zSJt7YjxNvjZWmReuhpLM03_2_pI-QDg88MQH1JDCTvKuC8AsG5quANWTGpRNUo1bwlK2A1q2Td8WNyktI9AHQK1BE5FhI6LgWsyPIjOD94a7IPMw0DzVuk6wUd_vLzhprZ0VsfMdMpOBzpg89bamh5mkea_YR0Z6KZMGOkQ4i09yGj3c5hDJsSOtLR2OwtNdY7uovBLXZf9J68G8yY8OxlnpKf37_dXVxV65vL64uv68oKJXMlHCpjwbRC8LoB3kDPXGcFh1ZKNxgYHIOmh0YYWwO3fS15O8i2M1wyA1yckvNDbqn-vWDKevLJ4jiaGcOSNG-4aNtOCVHQT_-g92GJc_ldoeq2EaAkFIofKBtDShEHvYt-MvFRM9B7KfogRRcp-lmK3h99fIle-gnd35M_FgogDkAqq3mD8bX7P7FP5-mXCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648630750</pqid></control><display><type>article</type><title>Modification of the Luedeking and Piret model with a delay time parameter for biotechnological lactic acid production</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Groff, M. Carla ; Scaglia, Gustavo ; Ortiz, Oscar A. ; Noriega, Sandra E.</creator><creatorcontrib>Groff, M. Carla ; Scaglia, Gustavo ; Ortiz, Oscar A. ; Noriega, Sandra E.</creatorcontrib><description>Objectives To obtain a mathematical model that adequately describes the time lag between biomass generation and lactic acid production of lactic fermentations. Methods Seven experimental kinetics from other research works were studied to validate our proposal: four studies of Fungal Submerged Fermentation and three cases of Bacterial Submerged Fermentation, including the data recollected by Luedeking and Piret. Results We introduce a modification to the Luedeking and Piret model that consist in the introduction of a time delay parameter in the model, this parameter would account for the lag time that exists between the production of biomass and lactic acid. It is possible to determine this time delay in a simple way by approximating the biomass and product formation considering that they behave as a first order plus dead time system. The duration of this phenomenon, which is not described with the classical Luedeking and Piret model, is a function of microorganism physiology (ease of biomass growth), environment (nutrients) and type of inoculum. Conclusion The Luedeking and Piret with delay model applications reveal an increase of the R 2 in all cases, evidencing the quality of fit and the simplicity of the method proposed. These model would improve the accuracy of bioprocess scaling up.</description><identifier>ISSN: 0141-5492</identifier><identifier>EISSN: 1573-6776</identifier><identifier>DOI: 10.1007/s10529-022-03227-0</identifier><identifier>PMID: 35092530</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Acid production ; Applied Microbiology ; Biochemistry ; Biomass ; Biomedical and Life Sciences ; Biotechnology ; Delay time ; Fermentation ; Inoculum ; Kinetics ; Lactic Acid ; Lag time ; Life Sciences ; Mathematical models ; Microbiology ; Models, Biological ; Nutrients ; Original Research Paper ; Parameters ; Production methods ; Response time ; Time lag</subject><ispartof>Biotechnology letters, 2022-03, Vol.44 (3), p.415-427</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature B.V.</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-3de7ac0a8332460260b1d9c320855dfa0fd106b063ac402cb4528f589a251a023</citedby><cites>FETCH-LOGICAL-c375t-3de7ac0a8332460260b1d9c320855dfa0fd106b063ac402cb4528f589a251a023</cites><orcidid>0000-0002-7133-1582</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10529-022-03227-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10529-022-03227-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35092530$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Groff, M. Carla</creatorcontrib><creatorcontrib>Scaglia, Gustavo</creatorcontrib><creatorcontrib>Ortiz, Oscar A.</creatorcontrib><creatorcontrib>Noriega, Sandra E.</creatorcontrib><title>Modification of the Luedeking and Piret model with a delay time parameter for biotechnological lactic acid production</title><title>Biotechnology letters</title><addtitle>Biotechnol Lett</addtitle><addtitle>Biotechnol Lett</addtitle><description>Objectives To obtain a mathematical model that adequately describes the time lag between biomass generation and lactic acid production of lactic fermentations. Methods Seven experimental kinetics from other research works were studied to validate our proposal: four studies of Fungal Submerged Fermentation and three cases of Bacterial Submerged Fermentation, including the data recollected by Luedeking and Piret. Results We introduce a modification to the Luedeking and Piret model that consist in the introduction of a time delay parameter in the model, this parameter would account for the lag time that exists between the production of biomass and lactic acid. It is possible to determine this time delay in a simple way by approximating the biomass and product formation considering that they behave as a first order plus dead time system. The duration of this phenomenon, which is not described with the classical Luedeking and Piret model, is a function of microorganism physiology (ease of biomass growth), environment (nutrients) and type of inoculum. Conclusion The Luedeking and Piret with delay model applications reveal an increase of the R 2 in all cases, evidencing the quality of fit and the simplicity of the method proposed. These model would improve the accuracy of bioprocess scaling up.</description><subject>Acid production</subject><subject>Applied Microbiology</subject><subject>Biochemistry</subject><subject>Biomass</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Delay time</subject><subject>Fermentation</subject><subject>Inoculum</subject><subject>Kinetics</subject><subject>Lactic Acid</subject><subject>Lag time</subject><subject>Life Sciences</subject><subject>Mathematical models</subject><subject>Microbiology</subject><subject>Models, Biological</subject><subject>Nutrients</subject><subject>Original Research Paper</subject><subject>Parameters</subject><subject>Production methods</subject><subject>Response time</subject><subject>Time lag</subject><issn>0141-5492</issn><issn>1573-6776</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kcFO3DAQhq2qFSyUF-ihstQLl7RjO46TY4VaQNoKDvRsOfZk1zSJt7YjxNvjZWmReuhpLM03_2_pI-QDg88MQH1JDCTvKuC8AsG5quANWTGpRNUo1bwlK2A1q2Td8WNyktI9AHQK1BE5FhI6LgWsyPIjOD94a7IPMw0DzVuk6wUd_vLzhprZ0VsfMdMpOBzpg89bamh5mkea_YR0Z6KZMGOkQ4i09yGj3c5hDJsSOtLR2OwtNdY7uovBLXZf9J68G8yY8OxlnpKf37_dXVxV65vL64uv68oKJXMlHCpjwbRC8LoB3kDPXGcFh1ZKNxgYHIOmh0YYWwO3fS15O8i2M1wyA1yckvNDbqn-vWDKevLJ4jiaGcOSNG-4aNtOCVHQT_-g92GJc_ldoeq2EaAkFIofKBtDShEHvYt-MvFRM9B7KfogRRcp-lmK3h99fIle-gnd35M_FgogDkAqq3mD8bX7P7FP5-mXCQ</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Groff, M. Carla</creator><creator>Scaglia, Gustavo</creator><creator>Ortiz, Oscar A.</creator><creator>Noriega, Sandra E.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QR</scope><scope>7T7</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7133-1582</orcidid></search><sort><creationdate>20220301</creationdate><title>Modification of the Luedeking and Piret model with a delay time parameter for biotechnological lactic acid production</title><author>Groff, M. Carla ; Scaglia, Gustavo ; Ortiz, Oscar A. ; Noriega, Sandra E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-3de7ac0a8332460260b1d9c320855dfa0fd106b063ac402cb4528f589a251a023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acid production</topic><topic>Applied Microbiology</topic><topic>Biochemistry</topic><topic>Biomass</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Delay time</topic><topic>Fermentation</topic><topic>Inoculum</topic><topic>Kinetics</topic><topic>Lactic Acid</topic><topic>Lag time</topic><topic>Life Sciences</topic><topic>Mathematical models</topic><topic>Microbiology</topic><topic>Models, Biological</topic><topic>Nutrients</topic><topic>Original Research Paper</topic><topic>Parameters</topic><topic>Production methods</topic><topic>Response time</topic><topic>Time lag</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Groff, M. Carla</creatorcontrib><creatorcontrib>Scaglia, Gustavo</creatorcontrib><creatorcontrib>Ortiz, Oscar A.</creatorcontrib><creatorcontrib>Noriega, Sandra E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Groff, M. Carla</au><au>Scaglia, Gustavo</au><au>Ortiz, Oscar A.</au><au>Noriega, Sandra E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modification of the Luedeking and Piret model with a delay time parameter for biotechnological lactic acid production</atitle><jtitle>Biotechnology letters</jtitle><stitle>Biotechnol Lett</stitle><addtitle>Biotechnol Lett</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>44</volume><issue>3</issue><spage>415</spage><epage>427</epage><pages>415-427</pages><issn>0141-5492</issn><eissn>1573-6776</eissn><abstract>Objectives To obtain a mathematical model that adequately describes the time lag between biomass generation and lactic acid production of lactic fermentations. Methods Seven experimental kinetics from other research works were studied to validate our proposal: four studies of Fungal Submerged Fermentation and three cases of Bacterial Submerged Fermentation, including the data recollected by Luedeking and Piret. Results We introduce a modification to the Luedeking and Piret model that consist in the introduction of a time delay parameter in the model, this parameter would account for the lag time that exists between the production of biomass and lactic acid. It is possible to determine this time delay in a simple way by approximating the biomass and product formation considering that they behave as a first order plus dead time system. The duration of this phenomenon, which is not described with the classical Luedeking and Piret model, is a function of microorganism physiology (ease of biomass growth), environment (nutrients) and type of inoculum. Conclusion The Luedeking and Piret with delay model applications reveal an increase of the R 2 in all cases, evidencing the quality of fit and the simplicity of the method proposed. These model would improve the accuracy of bioprocess scaling up.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>35092530</pmid><doi>10.1007/s10529-022-03227-0</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7133-1582</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0141-5492
ispartof Biotechnology letters, 2022-03, Vol.44 (3), p.415-427
issn 0141-5492
1573-6776
language eng
recordid cdi_proquest_miscellaneous_2623889733
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Acid production
Applied Microbiology
Biochemistry
Biomass
Biomedical and Life Sciences
Biotechnology
Delay time
Fermentation
Inoculum
Kinetics
Lactic Acid
Lag time
Life Sciences
Mathematical models
Microbiology
Models, Biological
Nutrients
Original Research Paper
Parameters
Production methods
Response time
Time lag
title Modification of the Luedeking and Piret model with a delay time parameter for biotechnological lactic acid production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A09%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modification%20of%20the%20Luedeking%20and%20Piret%20model%20with%20a%20delay%20time%20parameter%20for%20biotechnological%20lactic%20acid%20production&rft.jtitle=Biotechnology%20letters&rft.au=Groff,%20M.%20Carla&rft.date=2022-03-01&rft.volume=44&rft.issue=3&rft.spage=415&rft.epage=427&rft.pages=415-427&rft.issn=0141-5492&rft.eissn=1573-6776&rft_id=info:doi/10.1007/s10529-022-03227-0&rft_dat=%3Cproquest_cross%3E2623889733%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2648630750&rft_id=info:pmid/35092530&rfr_iscdi=true