Space‐Confined Anchoring of Fe−Nx on Concave N‐Doped Carbon Cubes for Catalyzing Oxygen Reduction

Carbon‐based electrocatalysts with atomically dispersed Fe−N−C display promising performance for oxygen reduction reaction (ORR) amongst non‐precious electrocatalysts. Nonetheless, increasing the number and utilization of Fe−N−C active sites is challenging. Designing morphologies and adjusting the p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem 2022-03, Vol.15 (6), p.e202102642-n/a
Hauptverfasser: Zheng, Lingling, Zhao, Yingji, Zhang, Hongjuan, Xia, Wei, Tang, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page e202102642
container_title ChemSusChem
container_volume 15
creator Zheng, Lingling
Zhao, Yingji
Zhang, Hongjuan
Xia, Wei
Tang, Jing
description Carbon‐based electrocatalysts with atomically dispersed Fe−N−C display promising performance for oxygen reduction reaction (ORR) amongst non‐precious electrocatalysts. Nonetheless, increasing the number and utilization of Fe−N−C active sites is challenging. Designing morphologies and adjusting the pore structure of carbon‐based electrocatalysts would boost the mass transfer, enhance the utilization of the active sites, and increase the overall ORR performance. In this work, a concave N‐doped carbon cubes structure adorned with highly external Fe−Nx was designed and produced by the space‐confined induced strategy. The optimal electrocatalyst revealed excellent ORR activity in both alkaline and acidic electrolytes, with half‐wave potentials of 0.86 and 0.75 V, respectively. The superior performance arose from its unique concave structure, possessing more accessible active sites with improved intrinsic activity, which holds promising potential for preparing advanced ORR electrocatalysts. There's no space: Highly dispersed Fe−Nx anchored on concave N‐doped carbon is synthesized by space‐confined strategy. The resulting NC@Fe−N−C exhibits superior oxygen reduction activity, originating from the combination of intrinsic activity and acceleration of mass electron transfer.
doi_str_mv 10.1002/cssc.202102642
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2623328268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2623328268</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1812-fce6f355831e29048d85d2401c9e2d6c2b0cce844b60317f1dd85ae424b995373</originalsourceid><addsrcrecordid>eNpd0D1PwzAQBmALgUQprMyRWFhS_BXHGatAAalqJQoSW5Q4l5IqtUPcQMvEyIj4if0lOCrqwOSz_dzp9CJ0TvCAYEyvlLVqQDElmApOD1CPSMH9QPDnw33NyDE6sXaBscCRED00n9Wpgu3nd2x0UWrIvaFWL6Yp9dwzhTeC7dfPZO0Z7Tmg0jfwJg5fm9rJOG2y7qPNwHqFadzDKq02H13vdL2Zg_YeIG_VqjT6FB0VaWXh7O_so6fRzWN854-nt_fxcOzXRBLqFwpEwYJAMgI0wlzmMsgpx0RFQHOhaIaVAsl5JjAjYUFyB1LglGdRFLCQ9dHlbm7dmNcW7CpZllZBVaUaTGsTKihjVFIhHb34RxembbTbzilOQiKDMHIq2qn3soJNUjflMm02CcFJF3rShZ7sQ0_i2Sze39gvgIN5zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641718579</pqid></control><display><type>article</type><title>Space‐Confined Anchoring of Fe−Nx on Concave N‐Doped Carbon Cubes for Catalyzing Oxygen Reduction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zheng, Lingling ; Zhao, Yingji ; Zhang, Hongjuan ; Xia, Wei ; Tang, Jing</creator><creatorcontrib>Zheng, Lingling ; Zhao, Yingji ; Zhang, Hongjuan ; Xia, Wei ; Tang, Jing</creatorcontrib><description>Carbon‐based electrocatalysts with atomically dispersed Fe−N−C display promising performance for oxygen reduction reaction (ORR) amongst non‐precious electrocatalysts. Nonetheless, increasing the number and utilization of Fe−N−C active sites is challenging. Designing morphologies and adjusting the pore structure of carbon‐based electrocatalysts would boost the mass transfer, enhance the utilization of the active sites, and increase the overall ORR performance. In this work, a concave N‐doped carbon cubes structure adorned with highly external Fe−Nx was designed and produced by the space‐confined induced strategy. The optimal electrocatalyst revealed excellent ORR activity in both alkaline and acidic electrolytes, with half‐wave potentials of 0.86 and 0.75 V, respectively. The superior performance arose from its unique concave structure, possessing more accessible active sites with improved intrinsic activity, which holds promising potential for preparing advanced ORR electrocatalysts. There's no space: Highly dispersed Fe−Nx anchored on concave N‐doped carbon is synthesized by space‐confined strategy. The resulting NC@Fe−N−C exhibits superior oxygen reduction activity, originating from the combination of intrinsic activity and acceleration of mass electron transfer.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.202102642</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carbon ; concave nanocube ; Cubes ; Electrocatalysts ; Electrolytes ; Fe−N−C ; gravimetric site density ; Mass transfer ; ORR ; Oxygen reduction reactions ; porous structure</subject><ispartof>ChemSusChem, 2022-03, Vol.15 (6), p.e202102642-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7580-9459</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.202102642$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.202102642$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zheng, Lingling</creatorcontrib><creatorcontrib>Zhao, Yingji</creatorcontrib><creatorcontrib>Zhang, Hongjuan</creatorcontrib><creatorcontrib>Xia, Wei</creatorcontrib><creatorcontrib>Tang, Jing</creatorcontrib><title>Space‐Confined Anchoring of Fe−Nx on Concave N‐Doped Carbon Cubes for Catalyzing Oxygen Reduction</title><title>ChemSusChem</title><description>Carbon‐based electrocatalysts with atomically dispersed Fe−N−C display promising performance for oxygen reduction reaction (ORR) amongst non‐precious electrocatalysts. Nonetheless, increasing the number and utilization of Fe−N−C active sites is challenging. Designing morphologies and adjusting the pore structure of carbon‐based electrocatalysts would boost the mass transfer, enhance the utilization of the active sites, and increase the overall ORR performance. In this work, a concave N‐doped carbon cubes structure adorned with highly external Fe−Nx was designed and produced by the space‐confined induced strategy. The optimal electrocatalyst revealed excellent ORR activity in both alkaline and acidic electrolytes, with half‐wave potentials of 0.86 and 0.75 V, respectively. The superior performance arose from its unique concave structure, possessing more accessible active sites with improved intrinsic activity, which holds promising potential for preparing advanced ORR electrocatalysts. There's no space: Highly dispersed Fe−Nx anchored on concave N‐doped carbon is synthesized by space‐confined strategy. The resulting NC@Fe−N−C exhibits superior oxygen reduction activity, originating from the combination of intrinsic activity and acceleration of mass electron transfer.</description><subject>Carbon</subject><subject>concave nanocube</subject><subject>Cubes</subject><subject>Electrocatalysts</subject><subject>Electrolytes</subject><subject>Fe−N−C</subject><subject>gravimetric site density</subject><subject>Mass transfer</subject><subject>ORR</subject><subject>Oxygen reduction reactions</subject><subject>porous structure</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpd0D1PwzAQBmALgUQprMyRWFhS_BXHGatAAalqJQoSW5Q4l5IqtUPcQMvEyIj4if0lOCrqwOSz_dzp9CJ0TvCAYEyvlLVqQDElmApOD1CPSMH9QPDnw33NyDE6sXaBscCRED00n9Wpgu3nd2x0UWrIvaFWL6Yp9dwzhTeC7dfPZO0Z7Tmg0jfwJg5fm9rJOG2y7qPNwHqFadzDKq02H13vdL2Zg_YeIG_VqjT6FB0VaWXh7O_so6fRzWN854-nt_fxcOzXRBLqFwpEwYJAMgI0wlzmMsgpx0RFQHOhaIaVAsl5JjAjYUFyB1LglGdRFLCQ9dHlbm7dmNcW7CpZllZBVaUaTGsTKihjVFIhHb34RxembbTbzilOQiKDMHIq2qn3soJNUjflMm02CcFJF3rShZ7sQ0_i2Sze39gvgIN5zw</recordid><startdate>20220322</startdate><enddate>20220322</enddate><creator>Zheng, Lingling</creator><creator>Zhao, Yingji</creator><creator>Zhang, Hongjuan</creator><creator>Xia, Wei</creator><creator>Tang, Jing</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7580-9459</orcidid></search><sort><creationdate>20220322</creationdate><title>Space‐Confined Anchoring of Fe−Nx on Concave N‐Doped Carbon Cubes for Catalyzing Oxygen Reduction</title><author>Zheng, Lingling ; Zhao, Yingji ; Zhang, Hongjuan ; Xia, Wei ; Tang, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1812-fce6f355831e29048d85d2401c9e2d6c2b0cce844b60317f1dd85ae424b995373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon</topic><topic>concave nanocube</topic><topic>Cubes</topic><topic>Electrocatalysts</topic><topic>Electrolytes</topic><topic>Fe−N−C</topic><topic>gravimetric site density</topic><topic>Mass transfer</topic><topic>ORR</topic><topic>Oxygen reduction reactions</topic><topic>porous structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Lingling</creatorcontrib><creatorcontrib>Zhao, Yingji</creatorcontrib><creatorcontrib>Zhang, Hongjuan</creatorcontrib><creatorcontrib>Xia, Wei</creatorcontrib><creatorcontrib>Tang, Jing</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Lingling</au><au>Zhao, Yingji</au><au>Zhang, Hongjuan</au><au>Xia, Wei</au><au>Tang, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Space‐Confined Anchoring of Fe−Nx on Concave N‐Doped Carbon Cubes for Catalyzing Oxygen Reduction</atitle><jtitle>ChemSusChem</jtitle><date>2022-03-22</date><risdate>2022</risdate><volume>15</volume><issue>6</issue><spage>e202102642</spage><epage>n/a</epage><pages>e202102642-n/a</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>Carbon‐based electrocatalysts with atomically dispersed Fe−N−C display promising performance for oxygen reduction reaction (ORR) amongst non‐precious electrocatalysts. Nonetheless, increasing the number and utilization of Fe−N−C active sites is challenging. Designing morphologies and adjusting the pore structure of carbon‐based electrocatalysts would boost the mass transfer, enhance the utilization of the active sites, and increase the overall ORR performance. In this work, a concave N‐doped carbon cubes structure adorned with highly external Fe−Nx was designed and produced by the space‐confined induced strategy. The optimal electrocatalyst revealed excellent ORR activity in both alkaline and acidic electrolytes, with half‐wave potentials of 0.86 and 0.75 V, respectively. The superior performance arose from its unique concave structure, possessing more accessible active sites with improved intrinsic activity, which holds promising potential for preparing advanced ORR electrocatalysts. There's no space: Highly dispersed Fe−Nx anchored on concave N‐doped carbon is synthesized by space‐confined strategy. The resulting NC@Fe−N−C exhibits superior oxygen reduction activity, originating from the combination of intrinsic activity and acceleration of mass electron transfer.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cssc.202102642</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7580-9459</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1864-5631
ispartof ChemSusChem, 2022-03, Vol.15 (6), p.e202102642-n/a
issn 1864-5631
1864-564X
language eng
recordid cdi_proquest_miscellaneous_2623328268
source Wiley Online Library Journals Frontfile Complete
subjects Carbon
concave nanocube
Cubes
Electrocatalysts
Electrolytes
Fe−N−C
gravimetric site density
Mass transfer
ORR
Oxygen reduction reactions
porous structure
title Space‐Confined Anchoring of Fe−Nx on Concave N‐Doped Carbon Cubes for Catalyzing Oxygen Reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A10%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Space%E2%80%90Confined%20Anchoring%20of%20Fe%E2%88%92Nx%20on%20Concave%20N%E2%80%90Doped%20Carbon%20Cubes%20for%20Catalyzing%20Oxygen%20Reduction&rft.jtitle=ChemSusChem&rft.au=Zheng,%20Lingling&rft.date=2022-03-22&rft.volume=15&rft.issue=6&rft.spage=e202102642&rft.epage=n/a&rft.pages=e202102642-n/a&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.202102642&rft_dat=%3Cproquest_wiley%3E2623328268%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2641718579&rft_id=info:pmid/&rfr_iscdi=true