Space‐Confined Anchoring of Fe−Nx on Concave N‐Doped Carbon Cubes for Catalyzing Oxygen Reduction
Carbon‐based electrocatalysts with atomically dispersed Fe−N−C display promising performance for oxygen reduction reaction (ORR) amongst non‐precious electrocatalysts. Nonetheless, increasing the number and utilization of Fe−N−C active sites is challenging. Designing morphologies and adjusting the p...
Gespeichert in:
Veröffentlicht in: | ChemSusChem 2022-03, Vol.15 (6), p.e202102642-n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 6 |
container_start_page | e202102642 |
container_title | ChemSusChem |
container_volume | 15 |
creator | Zheng, Lingling Zhao, Yingji Zhang, Hongjuan Xia, Wei Tang, Jing |
description | Carbon‐based electrocatalysts with atomically dispersed Fe−N−C display promising performance for oxygen reduction reaction (ORR) amongst non‐precious electrocatalysts. Nonetheless, increasing the number and utilization of Fe−N−C active sites is challenging. Designing morphologies and adjusting the pore structure of carbon‐based electrocatalysts would boost the mass transfer, enhance the utilization of the active sites, and increase the overall ORR performance. In this work, a concave N‐doped carbon cubes structure adorned with highly external Fe−Nx was designed and produced by the space‐confined induced strategy. The optimal electrocatalyst revealed excellent ORR activity in both alkaline and acidic electrolytes, with half‐wave potentials of 0.86 and 0.75 V, respectively. The superior performance arose from its unique concave structure, possessing more accessible active sites with improved intrinsic activity, which holds promising potential for preparing advanced ORR electrocatalysts.
There's no space: Highly dispersed Fe−Nx anchored on concave N‐doped carbon is synthesized by space‐confined strategy. The resulting NC@Fe−N−C exhibits superior oxygen reduction activity, originating from the combination of intrinsic activity and acceleration of mass electron transfer. |
doi_str_mv | 10.1002/cssc.202102642 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2623328268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2623328268</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1812-fce6f355831e29048d85d2401c9e2d6c2b0cce844b60317f1dd85ae424b995373</originalsourceid><addsrcrecordid>eNpd0D1PwzAQBmALgUQprMyRWFhS_BXHGatAAalqJQoSW5Q4l5IqtUPcQMvEyIj4if0lOCrqwOSz_dzp9CJ0TvCAYEyvlLVqQDElmApOD1CPSMH9QPDnw33NyDE6sXaBscCRED00n9Wpgu3nd2x0UWrIvaFWL6Yp9dwzhTeC7dfPZO0Z7Tmg0jfwJg5fm9rJOG2y7qPNwHqFadzDKq02H13vdL2Zg_YeIG_VqjT6FB0VaWXh7O_so6fRzWN854-nt_fxcOzXRBLqFwpEwYJAMgI0wlzmMsgpx0RFQHOhaIaVAsl5JjAjYUFyB1LglGdRFLCQ9dHlbm7dmNcW7CpZllZBVaUaTGsTKihjVFIhHb34RxembbTbzilOQiKDMHIq2qn3soJNUjflMm02CcFJF3rShZ7sQ0_i2Sze39gvgIN5zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641718579</pqid></control><display><type>article</type><title>Space‐Confined Anchoring of Fe−Nx on Concave N‐Doped Carbon Cubes for Catalyzing Oxygen Reduction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zheng, Lingling ; Zhao, Yingji ; Zhang, Hongjuan ; Xia, Wei ; Tang, Jing</creator><creatorcontrib>Zheng, Lingling ; Zhao, Yingji ; Zhang, Hongjuan ; Xia, Wei ; Tang, Jing</creatorcontrib><description>Carbon‐based electrocatalysts with atomically dispersed Fe−N−C display promising performance for oxygen reduction reaction (ORR) amongst non‐precious electrocatalysts. Nonetheless, increasing the number and utilization of Fe−N−C active sites is challenging. Designing morphologies and adjusting the pore structure of carbon‐based electrocatalysts would boost the mass transfer, enhance the utilization of the active sites, and increase the overall ORR performance. In this work, a concave N‐doped carbon cubes structure adorned with highly external Fe−Nx was designed and produced by the space‐confined induced strategy. The optimal electrocatalyst revealed excellent ORR activity in both alkaline and acidic electrolytes, with half‐wave potentials of 0.86 and 0.75 V, respectively. The superior performance arose from its unique concave structure, possessing more accessible active sites with improved intrinsic activity, which holds promising potential for preparing advanced ORR electrocatalysts.
There's no space: Highly dispersed Fe−Nx anchored on concave N‐doped carbon is synthesized by space‐confined strategy. The resulting NC@Fe−N−C exhibits superior oxygen reduction activity, originating from the combination of intrinsic activity and acceleration of mass electron transfer.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.202102642</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carbon ; concave nanocube ; Cubes ; Electrocatalysts ; Electrolytes ; Fe−N−C ; gravimetric site density ; Mass transfer ; ORR ; Oxygen reduction reactions ; porous structure</subject><ispartof>ChemSusChem, 2022-03, Vol.15 (6), p.e202102642-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7580-9459</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.202102642$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.202102642$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zheng, Lingling</creatorcontrib><creatorcontrib>Zhao, Yingji</creatorcontrib><creatorcontrib>Zhang, Hongjuan</creatorcontrib><creatorcontrib>Xia, Wei</creatorcontrib><creatorcontrib>Tang, Jing</creatorcontrib><title>Space‐Confined Anchoring of Fe−Nx on Concave N‐Doped Carbon Cubes for Catalyzing Oxygen Reduction</title><title>ChemSusChem</title><description>Carbon‐based electrocatalysts with atomically dispersed Fe−N−C display promising performance for oxygen reduction reaction (ORR) amongst non‐precious electrocatalysts. Nonetheless, increasing the number and utilization of Fe−N−C active sites is challenging. Designing morphologies and adjusting the pore structure of carbon‐based electrocatalysts would boost the mass transfer, enhance the utilization of the active sites, and increase the overall ORR performance. In this work, a concave N‐doped carbon cubes structure adorned with highly external Fe−Nx was designed and produced by the space‐confined induced strategy. The optimal electrocatalyst revealed excellent ORR activity in both alkaline and acidic electrolytes, with half‐wave potentials of 0.86 and 0.75 V, respectively. The superior performance arose from its unique concave structure, possessing more accessible active sites with improved intrinsic activity, which holds promising potential for preparing advanced ORR electrocatalysts.
There's no space: Highly dispersed Fe−Nx anchored on concave N‐doped carbon is synthesized by space‐confined strategy. The resulting NC@Fe−N−C exhibits superior oxygen reduction activity, originating from the combination of intrinsic activity and acceleration of mass electron transfer.</description><subject>Carbon</subject><subject>concave nanocube</subject><subject>Cubes</subject><subject>Electrocatalysts</subject><subject>Electrolytes</subject><subject>Fe−N−C</subject><subject>gravimetric site density</subject><subject>Mass transfer</subject><subject>ORR</subject><subject>Oxygen reduction reactions</subject><subject>porous structure</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpd0D1PwzAQBmALgUQprMyRWFhS_BXHGatAAalqJQoSW5Q4l5IqtUPcQMvEyIj4if0lOCrqwOSz_dzp9CJ0TvCAYEyvlLVqQDElmApOD1CPSMH9QPDnw33NyDE6sXaBscCRED00n9Wpgu3nd2x0UWrIvaFWL6Yp9dwzhTeC7dfPZO0Z7Tmg0jfwJg5fm9rJOG2y7qPNwHqFadzDKq02H13vdL2Zg_YeIG_VqjT6FB0VaWXh7O_so6fRzWN854-nt_fxcOzXRBLqFwpEwYJAMgI0wlzmMsgpx0RFQHOhaIaVAsl5JjAjYUFyB1LglGdRFLCQ9dHlbm7dmNcW7CpZllZBVaUaTGsTKihjVFIhHb34RxembbTbzilOQiKDMHIq2qn3soJNUjflMm02CcFJF3rShZ7sQ0_i2Sze39gvgIN5zw</recordid><startdate>20220322</startdate><enddate>20220322</enddate><creator>Zheng, Lingling</creator><creator>Zhao, Yingji</creator><creator>Zhang, Hongjuan</creator><creator>Xia, Wei</creator><creator>Tang, Jing</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7580-9459</orcidid></search><sort><creationdate>20220322</creationdate><title>Space‐Confined Anchoring of Fe−Nx on Concave N‐Doped Carbon Cubes for Catalyzing Oxygen Reduction</title><author>Zheng, Lingling ; Zhao, Yingji ; Zhang, Hongjuan ; Xia, Wei ; Tang, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1812-fce6f355831e29048d85d2401c9e2d6c2b0cce844b60317f1dd85ae424b995373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon</topic><topic>concave nanocube</topic><topic>Cubes</topic><topic>Electrocatalysts</topic><topic>Electrolytes</topic><topic>Fe−N−C</topic><topic>gravimetric site density</topic><topic>Mass transfer</topic><topic>ORR</topic><topic>Oxygen reduction reactions</topic><topic>porous structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Lingling</creatorcontrib><creatorcontrib>Zhao, Yingji</creatorcontrib><creatorcontrib>Zhang, Hongjuan</creatorcontrib><creatorcontrib>Xia, Wei</creatorcontrib><creatorcontrib>Tang, Jing</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Lingling</au><au>Zhao, Yingji</au><au>Zhang, Hongjuan</au><au>Xia, Wei</au><au>Tang, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Space‐Confined Anchoring of Fe−Nx on Concave N‐Doped Carbon Cubes for Catalyzing Oxygen Reduction</atitle><jtitle>ChemSusChem</jtitle><date>2022-03-22</date><risdate>2022</risdate><volume>15</volume><issue>6</issue><spage>e202102642</spage><epage>n/a</epage><pages>e202102642-n/a</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>Carbon‐based electrocatalysts with atomically dispersed Fe−N−C display promising performance for oxygen reduction reaction (ORR) amongst non‐precious electrocatalysts. Nonetheless, increasing the number and utilization of Fe−N−C active sites is challenging. Designing morphologies and adjusting the pore structure of carbon‐based electrocatalysts would boost the mass transfer, enhance the utilization of the active sites, and increase the overall ORR performance. In this work, a concave N‐doped carbon cubes structure adorned with highly external Fe−Nx was designed and produced by the space‐confined induced strategy. The optimal electrocatalyst revealed excellent ORR activity in both alkaline and acidic electrolytes, with half‐wave potentials of 0.86 and 0.75 V, respectively. The superior performance arose from its unique concave structure, possessing more accessible active sites with improved intrinsic activity, which holds promising potential for preparing advanced ORR electrocatalysts.
There's no space: Highly dispersed Fe−Nx anchored on concave N‐doped carbon is synthesized by space‐confined strategy. The resulting NC@Fe−N−C exhibits superior oxygen reduction activity, originating from the combination of intrinsic activity and acceleration of mass electron transfer.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cssc.202102642</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7580-9459</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1864-5631 |
ispartof | ChemSusChem, 2022-03, Vol.15 (6), p.e202102642-n/a |
issn | 1864-5631 1864-564X |
language | eng |
recordid | cdi_proquest_miscellaneous_2623328268 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Carbon concave nanocube Cubes Electrocatalysts Electrolytes Fe−N−C gravimetric site density Mass transfer ORR Oxygen reduction reactions porous structure |
title | Space‐Confined Anchoring of Fe−Nx on Concave N‐Doped Carbon Cubes for Catalyzing Oxygen Reduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A10%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Space%E2%80%90Confined%20Anchoring%20of%20Fe%E2%88%92Nx%20on%20Concave%20N%E2%80%90Doped%20Carbon%20Cubes%20for%20Catalyzing%20Oxygen%20Reduction&rft.jtitle=ChemSusChem&rft.au=Zheng,%20Lingling&rft.date=2022-03-22&rft.volume=15&rft.issue=6&rft.spage=e202102642&rft.epage=n/a&rft.pages=e202102642-n/a&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.202102642&rft_dat=%3Cproquest_wiley%3E2623328268%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2641718579&rft_id=info:pmid/&rfr_iscdi=true |