Potential Application of Machine-Learning-Based Quantum Chemical Methods in Environmental Chemistry
It is an important topic in environmental sciences to understand the behavior and toxicology of chemical pollutants. Quantum chemical methodologies have served as useful tools for probing behavior and toxicology of chemical pollutants in recent decades. In recent years, machine learning (ML) techniq...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2022-02, Vol.56 (4), p.2115-2123 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2123 |
---|---|
container_issue | 4 |
container_start_page | 2115 |
container_title | Environmental science & technology |
container_volume | 56 |
creator | Xia, Deming Chen, Jingwen Fu, Zhiqiang Xu, Tong Wang, Zhongyu Liu, Wenjia Xie, Hong-bin Peijnenburg, Willie J. G. M |
description | It is an important topic in environmental sciences to understand the behavior and toxicology of chemical pollutants. Quantum chemical methodologies have served as useful tools for probing behavior and toxicology of chemical pollutants in recent decades. In recent years, machine learning (ML) techniques have brought revolutionary developments to the field of quantum chemistry, which may be beneficial for investigating environmental behavior and toxicology of chemical pollutants. However, the ML-based quantum chemical methods (ML-QCMs) have only scarcely been used in environmental chemical studies so far. To promote applications of the promising methods, this Perspective summarizes recent progress in the ML-QCMs and focuses on their potential applications in environmental chemical studies that could hardly be achieved by the conventional quantum chemical methods. Potential applications and challenges of the ML-QCMs in predicting degradation networks of chemical pollutants, searching global minima for atmospheric nanoclusters, discovering heterogeneous or photochemical transformation pathways of pollutants, as well as predicting environmentally relevant end points with wave functions as descriptors are introduced and discussed. |
doi_str_mv | 10.1021/acs.est.1c05970 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2623327563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2630944421</sourcerecordid><originalsourceid>FETCH-LOGICAL-a402t-9cd631ca52afa69e769cf3c3125d4758bae0644f493fb4e6fa3e24c3ec6551033</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRbK2evUnAiyBpZz_bHLX4BS0qKHgL283ERpLdupsI_nu3tnoQPM1hnved4SHkmMKQAqMjbcIQQzukBmQ2hh3Sp5JBKieS7pI-AOVpxtVLjxyE8AYAjMNkn_S4hImgGe0T8-BatG2l6-Ritaoro9vK2cSVyVybZWUxnaH2trKv6aUOWCSPnbZt1yTTJTaRrpM5tktXhKSyyZX9qLyzTSyMi28itP7zkOyVug54tJ0D8nx99TS9TWf3N3fTi1mqBbA2zUyhODVaMl1qleFYZabkhlMmCzGWk4VGUEKUIuPlQqAqNUcmDEejpKTA-YCcbXpX3r13UUse7xusa23RdSFninHOxlKt0dM_6JvrvI3fRYpDJoRgNFKjDWW8C8Fjma981Wj_mVPI1_7z6D9fp7f-Y-Jk29stGix--R_hETjfAOvk783_6r4ANQaQyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2630944421</pqid></control><display><type>article</type><title>Potential Application of Machine-Learning-Based Quantum Chemical Methods in Environmental Chemistry</title><source>ACS Publications</source><source>MEDLINE</source><creator>Xia, Deming ; Chen, Jingwen ; Fu, Zhiqiang ; Xu, Tong ; Wang, Zhongyu ; Liu, Wenjia ; Xie, Hong-bin ; Peijnenburg, Willie J. G. M</creator><creatorcontrib>Xia, Deming ; Chen, Jingwen ; Fu, Zhiqiang ; Xu, Tong ; Wang, Zhongyu ; Liu, Wenjia ; Xie, Hong-bin ; Peijnenburg, Willie J. G. M</creatorcontrib><description>It is an important topic in environmental sciences to understand the behavior and toxicology of chemical pollutants. Quantum chemical methodologies have served as useful tools for probing behavior and toxicology of chemical pollutants in recent decades. In recent years, machine learning (ML) techniques have brought revolutionary developments to the field of quantum chemistry, which may be beneficial for investigating environmental behavior and toxicology of chemical pollutants. However, the ML-based quantum chemical methods (ML-QCMs) have only scarcely been used in environmental chemical studies so far. To promote applications of the promising methods, this Perspective summarizes recent progress in the ML-QCMs and focuses on their potential applications in environmental chemical studies that could hardly be achieved by the conventional quantum chemical methods. Potential applications and challenges of the ML-QCMs in predicting degradation networks of chemical pollutants, searching global minima for atmospheric nanoclusters, discovering heterogeneous or photochemical transformation pathways of pollutants, as well as predicting environmentally relevant end points with wave functions as descriptors are introduced and discussed.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.1c05970</identifier><identifier>PMID: 35084191</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Atmospheric chemistry ; Chemical pollutants ; Chemical pollution ; Environmental behavior ; Environmental chemistry ; Environmental degradation ; Environmental Pollutants ; Environmental science ; Learning algorithms ; Machine Learning ; Nanoclusters ; Photochemicals ; Pollutants ; Quantum chemistry ; Toxicology ; Wave functions</subject><ispartof>Environmental science & technology, 2022-02, Vol.56 (4), p.2115-2123</ispartof><rights>2022 American Chemical Society</rights><rights>Copyright American Chemical Society Feb 15, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a402t-9cd631ca52afa69e769cf3c3125d4758bae0644f493fb4e6fa3e24c3ec6551033</citedby><cites>FETCH-LOGICAL-a402t-9cd631ca52afa69e769cf3c3125d4758bae0644f493fb4e6fa3e24c3ec6551033</cites><orcidid>0000-0002-9119-9785 ; 0000-0003-2958-9149 ; 0000-0002-5756-3336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.1c05970$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.1c05970$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35084191$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xia, Deming</creatorcontrib><creatorcontrib>Chen, Jingwen</creatorcontrib><creatorcontrib>Fu, Zhiqiang</creatorcontrib><creatorcontrib>Xu, Tong</creatorcontrib><creatorcontrib>Wang, Zhongyu</creatorcontrib><creatorcontrib>Liu, Wenjia</creatorcontrib><creatorcontrib>Xie, Hong-bin</creatorcontrib><creatorcontrib>Peijnenburg, Willie J. G. M</creatorcontrib><title>Potential Application of Machine-Learning-Based Quantum Chemical Methods in Environmental Chemistry</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>It is an important topic in environmental sciences to understand the behavior and toxicology of chemical pollutants. Quantum chemical methodologies have served as useful tools for probing behavior and toxicology of chemical pollutants in recent decades. In recent years, machine learning (ML) techniques have brought revolutionary developments to the field of quantum chemistry, which may be beneficial for investigating environmental behavior and toxicology of chemical pollutants. However, the ML-based quantum chemical methods (ML-QCMs) have only scarcely been used in environmental chemical studies so far. To promote applications of the promising methods, this Perspective summarizes recent progress in the ML-QCMs and focuses on their potential applications in environmental chemical studies that could hardly be achieved by the conventional quantum chemical methods. Potential applications and challenges of the ML-QCMs in predicting degradation networks of chemical pollutants, searching global minima for atmospheric nanoclusters, discovering heterogeneous or photochemical transformation pathways of pollutants, as well as predicting environmentally relevant end points with wave functions as descriptors are introduced and discussed.</description><subject>Atmospheric chemistry</subject><subject>Chemical pollutants</subject><subject>Chemical pollution</subject><subject>Environmental behavior</subject><subject>Environmental chemistry</subject><subject>Environmental degradation</subject><subject>Environmental Pollutants</subject><subject>Environmental science</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Nanoclusters</subject><subject>Photochemicals</subject><subject>Pollutants</subject><subject>Quantum chemistry</subject><subject>Toxicology</subject><subject>Wave functions</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1Lw0AQhhdRbK2evUnAiyBpZz_bHLX4BS0qKHgL283ERpLdupsI_nu3tnoQPM1hnved4SHkmMKQAqMjbcIQQzukBmQ2hh3Sp5JBKieS7pI-AOVpxtVLjxyE8AYAjMNkn_S4hImgGe0T8-BatG2l6-Ritaoro9vK2cSVyVybZWUxnaH2trKv6aUOWCSPnbZt1yTTJTaRrpM5tktXhKSyyZX9qLyzTSyMi28itP7zkOyVug54tJ0D8nx99TS9TWf3N3fTi1mqBbA2zUyhODVaMl1qleFYZabkhlMmCzGWk4VGUEKUIuPlQqAqNUcmDEejpKTA-YCcbXpX3r13UUse7xusa23RdSFninHOxlKt0dM_6JvrvI3fRYpDJoRgNFKjDWW8C8Fjma981Wj_mVPI1_7z6D9fp7f-Y-Jk29stGix--R_hETjfAOvk783_6r4ANQaQyw</recordid><startdate>20220215</startdate><enddate>20220215</enddate><creator>Xia, Deming</creator><creator>Chen, Jingwen</creator><creator>Fu, Zhiqiang</creator><creator>Xu, Tong</creator><creator>Wang, Zhongyu</creator><creator>Liu, Wenjia</creator><creator>Xie, Hong-bin</creator><creator>Peijnenburg, Willie J. G. M</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9119-9785</orcidid><orcidid>https://orcid.org/0000-0003-2958-9149</orcidid><orcidid>https://orcid.org/0000-0002-5756-3336</orcidid></search><sort><creationdate>20220215</creationdate><title>Potential Application of Machine-Learning-Based Quantum Chemical Methods in Environmental Chemistry</title><author>Xia, Deming ; Chen, Jingwen ; Fu, Zhiqiang ; Xu, Tong ; Wang, Zhongyu ; Liu, Wenjia ; Xie, Hong-bin ; Peijnenburg, Willie J. G. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a402t-9cd631ca52afa69e769cf3c3125d4758bae0644f493fb4e6fa3e24c3ec6551033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atmospheric chemistry</topic><topic>Chemical pollutants</topic><topic>Chemical pollution</topic><topic>Environmental behavior</topic><topic>Environmental chemistry</topic><topic>Environmental degradation</topic><topic>Environmental Pollutants</topic><topic>Environmental science</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Nanoclusters</topic><topic>Photochemicals</topic><topic>Pollutants</topic><topic>Quantum chemistry</topic><topic>Toxicology</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Deming</creatorcontrib><creatorcontrib>Chen, Jingwen</creatorcontrib><creatorcontrib>Fu, Zhiqiang</creatorcontrib><creatorcontrib>Xu, Tong</creatorcontrib><creatorcontrib>Wang, Zhongyu</creatorcontrib><creatorcontrib>Liu, Wenjia</creatorcontrib><creatorcontrib>Xie, Hong-bin</creatorcontrib><creatorcontrib>Peijnenburg, Willie J. G. M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Deming</au><au>Chen, Jingwen</au><au>Fu, Zhiqiang</au><au>Xu, Tong</au><au>Wang, Zhongyu</au><au>Liu, Wenjia</au><au>Xie, Hong-bin</au><au>Peijnenburg, Willie J. G. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Potential Application of Machine-Learning-Based Quantum Chemical Methods in Environmental Chemistry</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2022-02-15</date><risdate>2022</risdate><volume>56</volume><issue>4</issue><spage>2115</spage><epage>2123</epage><pages>2115-2123</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>It is an important topic in environmental sciences to understand the behavior and toxicology of chemical pollutants. Quantum chemical methodologies have served as useful tools for probing behavior and toxicology of chemical pollutants in recent decades. In recent years, machine learning (ML) techniques have brought revolutionary developments to the field of quantum chemistry, which may be beneficial for investigating environmental behavior and toxicology of chemical pollutants. However, the ML-based quantum chemical methods (ML-QCMs) have only scarcely been used in environmental chemical studies so far. To promote applications of the promising methods, this Perspective summarizes recent progress in the ML-QCMs and focuses on their potential applications in environmental chemical studies that could hardly be achieved by the conventional quantum chemical methods. Potential applications and challenges of the ML-QCMs in predicting degradation networks of chemical pollutants, searching global minima for atmospheric nanoclusters, discovering heterogeneous or photochemical transformation pathways of pollutants, as well as predicting environmentally relevant end points with wave functions as descriptors are introduced and discussed.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35084191</pmid><doi>10.1021/acs.est.1c05970</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9119-9785</orcidid><orcidid>https://orcid.org/0000-0003-2958-9149</orcidid><orcidid>https://orcid.org/0000-0002-5756-3336</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2022-02, Vol.56 (4), p.2115-2123 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_2623327563 |
source | ACS Publications; MEDLINE |
subjects | Atmospheric chemistry Chemical pollutants Chemical pollution Environmental behavior Environmental chemistry Environmental degradation Environmental Pollutants Environmental science Learning algorithms Machine Learning Nanoclusters Photochemicals Pollutants Quantum chemistry Toxicology Wave functions |
title | Potential Application of Machine-Learning-Based Quantum Chemical Methods in Environmental Chemistry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A17%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Potential%20Application%20of%20Machine-Learning-Based%20Quantum%20Chemical%20Methods%20in%20Environmental%20Chemistry&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Xia,%20Deming&rft.date=2022-02-15&rft.volume=56&rft.issue=4&rft.spage=2115&rft.epage=2123&rft.pages=2115-2123&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.1c05970&rft_dat=%3Cproquest_cross%3E2630944421%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2630944421&rft_id=info:pmid/35084191&rfr_iscdi=true |