Computational analysis of cancer genome sequencing data

Distilling biologically meaningful information from cancer genome sequencing data requires comprehensive identification of somatic alterations using rigorous computational methods. As the amount and complexity of sequencing data have increased, so has the number of tools for analysing them. Here, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature reviews. Genetics 2022-05, Vol.23 (5), p.298-314
Hauptverfasser: Cortés-Ciriano, Isidro, Gulhan, Doga C., Lee, Jake June-Koo, Melloni, Giorgio E. M., Park, Peter J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 314
container_issue 5
container_start_page 298
container_title Nature reviews. Genetics
container_volume 23
creator Cortés-Ciriano, Isidro
Gulhan, Doga C.
Lee, Jake June-Koo
Melloni, Giorgio E. M.
Park, Peter J.
description Distilling biologically meaningful information from cancer genome sequencing data requires comprehensive identification of somatic alterations using rigorous computational methods. As the amount and complexity of sequencing data have increased, so has the number of tools for analysing them. Here, we describe the main steps involved in the bioinformatic analysis of cancer genomes, review key algorithmic developments and highlight popular tools and emerging technologies. These tools include those that identify point mutations, copy number alterations, structural variations and mutational signatures in cancer genomes. We also discuss issues in experimental design, the strengths and limitations of sequencing modalities and methodological challenges for the future. In this Review the authors provide an overview of key algorithmic developments, popular tools and emerging technologies used in the bioinformatic analysis of genomes. They also describe how such analysis can identify point mutations, copy number alterations, structural variations and mutational signatures in cancer genomes.
doi_str_mv 10.1038/s41576-021-00431-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2623081019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2652731187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-3896bded81ec547ce722b5dc3db0001451c54b0e2edcceb0c4539bcaceb5a55f3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EolD4AwwoEgtLwOePOB1RxZdUiQVmy3EuVaokLnYy5N_jklIkBhbfnf3c67uXkCugd0B5fh8ESJWllEFKqeCQjkfkDITalZk4PuQym5HzEDaUQgaKn5IZF3lOBRNnRC1dux1609euM01i4jGGOiSuSqzpLPpkjZ1rMQn4OWBn626dlKY3F-SkMk3Ay32ck4-nx_flS7p6e35dPqxSy5XsU54vsqLEMge0UiiLirFClpaXBY3jCAnxuqDIsLQWC2qF5IvCmphLI2XF5-R20t16FwcIvW7rYLFpTIduCJpljNMcKCwievMH3bjBx4V2lGSKA-QqUmyirHcheKz01tet8aMGqne26slWHW3V37bqMTZd76WHosXy0PLjYwT4BIT41K3R__79j-wXR5yDAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2652731187</pqid></control><display><type>article</type><title>Computational analysis of cancer genome sequencing data</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Cortés-Ciriano, Isidro ; Gulhan, Doga C. ; Lee, Jake June-Koo ; Melloni, Giorgio E. M. ; Park, Peter J.</creator><creatorcontrib>Cortés-Ciriano, Isidro ; Gulhan, Doga C. ; Lee, Jake June-Koo ; Melloni, Giorgio E. M. ; Park, Peter J.</creatorcontrib><description>Distilling biologically meaningful information from cancer genome sequencing data requires comprehensive identification of somatic alterations using rigorous computational methods. As the amount and complexity of sequencing data have increased, so has the number of tools for analysing them. Here, we describe the main steps involved in the bioinformatic analysis of cancer genomes, review key algorithmic developments and highlight popular tools and emerging technologies. These tools include those that identify point mutations, copy number alterations, structural variations and mutational signatures in cancer genomes. We also discuss issues in experimental design, the strengths and limitations of sequencing modalities and methodological challenges for the future. In this Review the authors provide an overview of key algorithmic developments, popular tools and emerging technologies used in the bioinformatic analysis of genomes. They also describe how such analysis can identify point mutations, copy number alterations, structural variations and mutational signatures in cancer genomes.</description><identifier>ISSN: 1471-0056</identifier><identifier>EISSN: 1471-0064</identifier><identifier>DOI: 10.1038/s41576-021-00431-y</identifier><identifier>PMID: 34880424</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114 ; 631/114/794 ; 692/699/67/68 ; 692/699/67/69 ; Agriculture ; Animal Genetics and Genomics ; Biomedical and Life Sciences ; Biomedicine ; Cancer ; Cancer Research ; Chromosome Mapping ; Computational Biology ; Computer applications ; Copy number ; DNA Copy Number Variations ; Gene Function ; Genome, Human ; Genomes ; High-Throughput Nucleotide Sequencing ; Human Genetics ; Humans ; Mutation ; Neoplasms - genetics ; Review Article</subject><ispartof>Nature reviews. Genetics, 2022-05, Vol.23 (5), p.298-314</ispartof><rights>Springer Nature Limited 2021</rights><rights>2021. Springer Nature Limited.</rights><rights>Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-3896bded81ec547ce722b5dc3db0001451c54b0e2edcceb0c4539bcaceb5a55f3</citedby><cites>FETCH-LOGICAL-c375t-3896bded81ec547ce722b5dc3db0001451c54b0e2edcceb0c4539bcaceb5a55f3</cites><orcidid>0000-0001-5419-0549 ; 0000-0003-1348-4094 ; 0000-0001-9378-960X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41576-021-00431-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41576-021-00431-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34880424$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cortés-Ciriano, Isidro</creatorcontrib><creatorcontrib>Gulhan, Doga C.</creatorcontrib><creatorcontrib>Lee, Jake June-Koo</creatorcontrib><creatorcontrib>Melloni, Giorgio E. M.</creatorcontrib><creatorcontrib>Park, Peter J.</creatorcontrib><title>Computational analysis of cancer genome sequencing data</title><title>Nature reviews. Genetics</title><addtitle>Nat Rev Genet</addtitle><addtitle>Nat Rev Genet</addtitle><description>Distilling biologically meaningful information from cancer genome sequencing data requires comprehensive identification of somatic alterations using rigorous computational methods. As the amount and complexity of sequencing data have increased, so has the number of tools for analysing them. Here, we describe the main steps involved in the bioinformatic analysis of cancer genomes, review key algorithmic developments and highlight popular tools and emerging technologies. These tools include those that identify point mutations, copy number alterations, structural variations and mutational signatures in cancer genomes. We also discuss issues in experimental design, the strengths and limitations of sequencing modalities and methodological challenges for the future. In this Review the authors provide an overview of key algorithmic developments, popular tools and emerging technologies used in the bioinformatic analysis of genomes. They also describe how such analysis can identify point mutations, copy number alterations, structural variations and mutational signatures in cancer genomes.</description><subject>631/114</subject><subject>631/114/794</subject><subject>692/699/67/68</subject><subject>692/699/67/69</subject><subject>Agriculture</subject><subject>Animal Genetics and Genomics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer</subject><subject>Cancer Research</subject><subject>Chromosome Mapping</subject><subject>Computational Biology</subject><subject>Computer applications</subject><subject>Copy number</subject><subject>DNA Copy Number Variations</subject><subject>Gene Function</subject><subject>Genome, Human</subject><subject>Genomes</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Mutation</subject><subject>Neoplasms - genetics</subject><subject>Review Article</subject><issn>1471-0056</issn><issn>1471-0064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kD1PwzAQhi0EolD4AwwoEgtLwOePOB1RxZdUiQVmy3EuVaokLnYy5N_jklIkBhbfnf3c67uXkCugd0B5fh8ESJWllEFKqeCQjkfkDITalZk4PuQym5HzEDaUQgaKn5IZF3lOBRNnRC1dux1609euM01i4jGGOiSuSqzpLPpkjZ1rMQn4OWBn626dlKY3F-SkMk3Ay32ck4-nx_flS7p6e35dPqxSy5XsU54vsqLEMge0UiiLirFClpaXBY3jCAnxuqDIsLQWC2qF5IvCmphLI2XF5-R20t16FwcIvW7rYLFpTIduCJpljNMcKCwievMH3bjBx4V2lGSKA-QqUmyirHcheKz01tet8aMGqne26slWHW3V37bqMTZd76WHosXy0PLjYwT4BIT41K3R__79j-wXR5yDAQ</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Cortés-Ciriano, Isidro</creator><creator>Gulhan, Doga C.</creator><creator>Lee, Jake June-Koo</creator><creator>Melloni, Giorgio E. M.</creator><creator>Park, Peter J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5419-0549</orcidid><orcidid>https://orcid.org/0000-0003-1348-4094</orcidid><orcidid>https://orcid.org/0000-0001-9378-960X</orcidid></search><sort><creationdate>20220501</creationdate><title>Computational analysis of cancer genome sequencing data</title><author>Cortés-Ciriano, Isidro ; Gulhan, Doga C. ; Lee, Jake June-Koo ; Melloni, Giorgio E. M. ; Park, Peter J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-3896bded81ec547ce722b5dc3db0001451c54b0e2edcceb0c4539bcaceb5a55f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/114</topic><topic>631/114/794</topic><topic>692/699/67/68</topic><topic>692/699/67/69</topic><topic>Agriculture</topic><topic>Animal Genetics and Genomics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer</topic><topic>Cancer Research</topic><topic>Chromosome Mapping</topic><topic>Computational Biology</topic><topic>Computer applications</topic><topic>Copy number</topic><topic>DNA Copy Number Variations</topic><topic>Gene Function</topic><topic>Genome, Human</topic><topic>Genomes</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Mutation</topic><topic>Neoplasms - genetics</topic><topic>Review Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cortés-Ciriano, Isidro</creatorcontrib><creatorcontrib>Gulhan, Doga C.</creatorcontrib><creatorcontrib>Lee, Jake June-Koo</creatorcontrib><creatorcontrib>Melloni, Giorgio E. M.</creatorcontrib><creatorcontrib>Park, Peter J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature reviews. Genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cortés-Ciriano, Isidro</au><au>Gulhan, Doga C.</au><au>Lee, Jake June-Koo</au><au>Melloni, Giorgio E. M.</au><au>Park, Peter J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational analysis of cancer genome sequencing data</atitle><jtitle>Nature reviews. Genetics</jtitle><stitle>Nat Rev Genet</stitle><addtitle>Nat Rev Genet</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>23</volume><issue>5</issue><spage>298</spage><epage>314</epage><pages>298-314</pages><issn>1471-0056</issn><eissn>1471-0064</eissn><abstract>Distilling biologically meaningful information from cancer genome sequencing data requires comprehensive identification of somatic alterations using rigorous computational methods. As the amount and complexity of sequencing data have increased, so has the number of tools for analysing them. Here, we describe the main steps involved in the bioinformatic analysis of cancer genomes, review key algorithmic developments and highlight popular tools and emerging technologies. These tools include those that identify point mutations, copy number alterations, structural variations and mutational signatures in cancer genomes. We also discuss issues in experimental design, the strengths and limitations of sequencing modalities and methodological challenges for the future. In this Review the authors provide an overview of key algorithmic developments, popular tools and emerging technologies used in the bioinformatic analysis of genomes. They also describe how such analysis can identify point mutations, copy number alterations, structural variations and mutational signatures in cancer genomes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34880424</pmid><doi>10.1038/s41576-021-00431-y</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5419-0549</orcidid><orcidid>https://orcid.org/0000-0003-1348-4094</orcidid><orcidid>https://orcid.org/0000-0001-9378-960X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1471-0056
ispartof Nature reviews. Genetics, 2022-05, Vol.23 (5), p.298-314
issn 1471-0056
1471-0064
language eng
recordid cdi_proquest_miscellaneous_2623081019
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 631/114
631/114/794
692/699/67/68
692/699/67/69
Agriculture
Animal Genetics and Genomics
Biomedical and Life Sciences
Biomedicine
Cancer
Cancer Research
Chromosome Mapping
Computational Biology
Computer applications
Copy number
DNA Copy Number Variations
Gene Function
Genome, Human
Genomes
High-Throughput Nucleotide Sequencing
Human Genetics
Humans
Mutation
Neoplasms - genetics
Review Article
title Computational analysis of cancer genome sequencing data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A05%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20analysis%20of%20cancer%20genome%20sequencing%20data&rft.jtitle=Nature%20reviews.%20Genetics&rft.au=Cort%C3%A9s-Ciriano,%20Isidro&rft.date=2022-05-01&rft.volume=23&rft.issue=5&rft.spage=298&rft.epage=314&rft.pages=298-314&rft.issn=1471-0056&rft.eissn=1471-0064&rft_id=info:doi/10.1038/s41576-021-00431-y&rft_dat=%3Cproquest_cross%3E2652731187%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2652731187&rft_id=info:pmid/34880424&rfr_iscdi=true