Ott–Antonsen ansatz for the D-dimensional Kuramoto model: A constructive approach
Kuramoto’s original model describes the dynamics and synchronization behavior of a set of interacting oscillators represented by their phases. The system can also be pictured as a set of particles moving on a circle in two dimensions, which allows a direct generalization to particles moving on the s...
Gespeichert in:
Veröffentlicht in: | Chaos (Woodbury, N.Y.) N.Y.), 2021-11, Vol.31 (11), p.113141-113141, Article 113141 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 113141 |
---|---|
container_issue | 11 |
container_start_page | 113141 |
container_title | Chaos (Woodbury, N.Y.) |
container_volume | 31 |
creator | Barioni, Ana Elisa D. de Aguiar, Marcus A. M. |
description | Kuramoto’s original model describes the dynamics and synchronization behavior of a set of interacting oscillators represented by their phases. The system can also be pictured as a set of particles moving on a circle in two dimensions, which allows a direct generalization to particles moving on the surface of higher dimensional spheres. One of the key features of the 2D system is the presence of a continuous phase transition to synchronization as the coupling intensity increases. Ott and Antonsen proposed an ansatz for the distribution of oscillators that allowed them to describe the dynamics of the order parameter with a single differential equation. A similar ansatz was later proposed for the D-dimensional model by using the same functional form of the 2D ansatz and adjusting its parameters. In this article, we develop a constructive method to find the ansatz, similarly to the procedure used in 2D. The method is based on our previous work for the 3D Kuramoto model where the ansatz was constructed using the spherical harmonics decomposition of the distribution function. In the case of motion in a D-dimensional sphere, the ansatz is based on the hyperspherical harmonics decomposition. Our result differs from the previously proposed ansatz and provides a simpler and more direct connection between the order parameter and the ansatz. |
doi_str_mv | 10.1063/5.0069350 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_miscellaneous_2623075527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2623075527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-4c5059d8f4673fe132c153dd8809009eae963cae4b5fdccbda9214b7ba20f42f3</originalsourceid><addsrcrecordid>eNqN0M9qFTEUBvAgiq3VhW8QcKOWqSd_J3F3uWotFrpQ10Mmk9ApM8k1yVR05Tv4hj6JuUypoFBcJYvfd5LzIfSUwAkByV6JEwCpmYB76JCA0k0rFb2_vwveEAFwgB7lfAUAhDLxEB0wrhSRRB-ijxel_PrxcxNKDNkFbEI25Tv2MeFy6fCbZhhnF_IYg5nwhyWZOZaI5zi46TXeYFtTJS22jNcOm90uRWMvH6MH3kzZPbk5j9Dnd28_bd835xenZ9vNeWOZhNJwK0DoQXkuW-YdYdQSwYZBKdAA2hmnJbPG8V74wdp-MJoS3re9oeA59ewIPV_n1me_LC6Xbh6zddNkgotL7qikDFohaFvps7_oVVxS3WmvALhUnOqqXqzKpphzcr7bpXE26VtHoNs33Ynupulq1Wq_uj76bEcXrLv1teqWEkFp3QRAbMdiSu1wG5dQavT4_6NVv1x1heuUW3od058fdbvB34X_XeE32Pyraw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2600468429</pqid></control><display><type>article</type><title>Ott–Antonsen ansatz for the D-dimensional Kuramoto model: A constructive approach</title><source>AIP Journals Complete</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Alma/SFX Local Collection</source><creator>Barioni, Ana Elisa D. ; de Aguiar, Marcus A. M.</creator><creatorcontrib>Barioni, Ana Elisa D. ; de Aguiar, Marcus A. M.</creatorcontrib><description>Kuramoto’s original model describes the dynamics and synchronization behavior of a set of interacting oscillators represented by their phases. The system can also be pictured as a set of particles moving on a circle in two dimensions, which allows a direct generalization to particles moving on the surface of higher dimensional spheres. One of the key features of the 2D system is the presence of a continuous phase transition to synchronization as the coupling intensity increases. Ott and Antonsen proposed an ansatz for the distribution of oscillators that allowed them to describe the dynamics of the order parameter with a single differential equation. A similar ansatz was later proposed for the D-dimensional model by using the same functional form of the 2D ansatz and adjusting its parameters. In this article, we develop a constructive method to find the ansatz, similarly to the procedure used in 2D. The method is based on our previous work for the 3D Kuramoto model where the ansatz was constructed using the spherical harmonics decomposition of the distribution function. In the case of motion in a D-dimensional sphere, the ansatz is based on the hyperspherical harmonics decomposition. Our result differs from the previously proposed ansatz and provides a simpler and more direct connection between the order parameter and the ansatz.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/5.0069350</identifier><identifier>PMID: 34881619</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>MELVILLE: AIP Publishing</publisher><subject>Decomposition ; Differential equations ; Distribution functions ; Mathematical models ; Mathematics ; Mathematics, Applied ; Order parameters ; Oscillators ; Phase transitions ; Physical Sciences ; Physics ; Physics, Mathematical ; Science & Technology ; Spherical harmonics ; Synchronism ; Three dimensional models ; Two dimensional models</subject><ispartof>Chaos (Woodbury, N.Y.), 2021-11, Vol.31 (11), p.113141-113141, Article 113141</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>10</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000721522900005</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c360t-4c5059d8f4673fe132c153dd8809009eae963cae4b5fdccbda9214b7ba20f42f3</citedby><cites>FETCH-LOGICAL-c360t-4c5059d8f4673fe132c153dd8809009eae963cae4b5fdccbda9214b7ba20f42f3</cites><orcidid>0000-0003-1379-7568</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,795,4513,27929,27930,39263</link.rule.ids></links><search><creatorcontrib>Barioni, Ana Elisa D.</creatorcontrib><creatorcontrib>de Aguiar, Marcus A. M.</creatorcontrib><title>Ott–Antonsen ansatz for the D-dimensional Kuramoto model: A constructive approach</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>CHAOS</addtitle><description>Kuramoto’s original model describes the dynamics and synchronization behavior of a set of interacting oscillators represented by their phases. The system can also be pictured as a set of particles moving on a circle in two dimensions, which allows a direct generalization to particles moving on the surface of higher dimensional spheres. One of the key features of the 2D system is the presence of a continuous phase transition to synchronization as the coupling intensity increases. Ott and Antonsen proposed an ansatz for the distribution of oscillators that allowed them to describe the dynamics of the order parameter with a single differential equation. A similar ansatz was later proposed for the D-dimensional model by using the same functional form of the 2D ansatz and adjusting its parameters. In this article, we develop a constructive method to find the ansatz, similarly to the procedure used in 2D. The method is based on our previous work for the 3D Kuramoto model where the ansatz was constructed using the spherical harmonics decomposition of the distribution function. In the case of motion in a D-dimensional sphere, the ansatz is based on the hyperspherical harmonics decomposition. Our result differs from the previously proposed ansatz and provides a simpler and more direct connection between the order parameter and the ansatz.</description><subject>Decomposition</subject><subject>Differential equations</subject><subject>Distribution functions</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics, Applied</subject><subject>Order parameters</subject><subject>Oscillators</subject><subject>Phase transitions</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Mathematical</subject><subject>Science & Technology</subject><subject>Spherical harmonics</subject><subject>Synchronism</subject><subject>Three dimensional models</subject><subject>Two dimensional models</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqN0M9qFTEUBvAgiq3VhW8QcKOWqSd_J3F3uWotFrpQ10Mmk9ApM8k1yVR05Tv4hj6JuUypoFBcJYvfd5LzIfSUwAkByV6JEwCpmYB76JCA0k0rFb2_vwveEAFwgB7lfAUAhDLxEB0wrhSRRB-ijxel_PrxcxNKDNkFbEI25Tv2MeFy6fCbZhhnF_IYg5nwhyWZOZaI5zi46TXeYFtTJS22jNcOm90uRWMvH6MH3kzZPbk5j9Dnd28_bd835xenZ9vNeWOZhNJwK0DoQXkuW-YdYdQSwYZBKdAA2hmnJbPG8V74wdp-MJoS3re9oeA59ewIPV_n1me_LC6Xbh6zddNkgotL7qikDFohaFvps7_oVVxS3WmvALhUnOqqXqzKpphzcr7bpXE26VtHoNs33Ynupulq1Wq_uj76bEcXrLv1teqWEkFp3QRAbMdiSu1wG5dQavT4_6NVv1x1heuUW3od058fdbvB34X_XeE32Pyraw</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Barioni, Ana Elisa D.</creator><creator>de Aguiar, Marcus A. M.</creator><general>AIP Publishing</general><general>American Institute of Physics</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1379-7568</orcidid></search><sort><creationdate>202111</creationdate><title>Ott–Antonsen ansatz for the D-dimensional Kuramoto model: A constructive approach</title><author>Barioni, Ana Elisa D. ; de Aguiar, Marcus A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-4c5059d8f4673fe132c153dd8809009eae963cae4b5fdccbda9214b7ba20f42f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Decomposition</topic><topic>Differential equations</topic><topic>Distribution functions</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics, Applied</topic><topic>Order parameters</topic><topic>Oscillators</topic><topic>Phase transitions</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Mathematical</topic><topic>Science & Technology</topic><topic>Spherical harmonics</topic><topic>Synchronism</topic><topic>Three dimensional models</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barioni, Ana Elisa D.</creatorcontrib><creatorcontrib>de Aguiar, Marcus A. M.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barioni, Ana Elisa D.</au><au>de Aguiar, Marcus A. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ott–Antonsen ansatz for the D-dimensional Kuramoto model: A constructive approach</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><stitle>CHAOS</stitle><date>2021-11</date><risdate>2021</risdate><volume>31</volume><issue>11</issue><spage>113141</spage><epage>113141</epage><pages>113141-113141</pages><artnum>113141</artnum><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>Kuramoto’s original model describes the dynamics and synchronization behavior of a set of interacting oscillators represented by their phases. The system can also be pictured as a set of particles moving on a circle in two dimensions, which allows a direct generalization to particles moving on the surface of higher dimensional spheres. One of the key features of the 2D system is the presence of a continuous phase transition to synchronization as the coupling intensity increases. Ott and Antonsen proposed an ansatz for the distribution of oscillators that allowed them to describe the dynamics of the order parameter with a single differential equation. A similar ansatz was later proposed for the D-dimensional model by using the same functional form of the 2D ansatz and adjusting its parameters. In this article, we develop a constructive method to find the ansatz, similarly to the procedure used in 2D. The method is based on our previous work for the 3D Kuramoto model where the ansatz was constructed using the spherical harmonics decomposition of the distribution function. In the case of motion in a D-dimensional sphere, the ansatz is based on the hyperspherical harmonics decomposition. Our result differs from the previously proposed ansatz and provides a simpler and more direct connection between the order parameter and the ansatz.</abstract><cop>MELVILLE</cop><pub>AIP Publishing</pub><pmid>34881619</pmid><doi>10.1063/5.0069350</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1379-7568</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-1500 |
ispartof | Chaos (Woodbury, N.Y.), 2021-11, Vol.31 (11), p.113141-113141, Article 113141 |
issn | 1054-1500 1089-7682 |
language | eng |
recordid | cdi_proquest_miscellaneous_2623075527 |
source | AIP Journals Complete; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection |
subjects | Decomposition Differential equations Distribution functions Mathematical models Mathematics Mathematics, Applied Order parameters Oscillators Phase transitions Physical Sciences Physics Physics, Mathematical Science & Technology Spherical harmonics Synchronism Three dimensional models Two dimensional models |
title | Ott–Antonsen ansatz for the D-dimensional Kuramoto model: A constructive approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T23%3A30%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ott%E2%80%93Antonsen%20ansatz%20for%20the%20D-dimensional%20Kuramoto%20model:%20A%20constructive%20approach&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Barioni,%20Ana%20Elisa%20D.&rft.date=2021-11&rft.volume=31&rft.issue=11&rft.spage=113141&rft.epage=113141&rft.pages=113141-113141&rft.artnum=113141&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/5.0069350&rft_dat=%3Cproquest_webof%3E2623075527%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2600468429&rft_id=info:pmid/34881619&rfr_iscdi=true |