Separation-free bacterial identification in arbitrary media via deep neural network-based SERS analysis
Universal and fast bacterial detection technology is imperative for food safety analyses and diagnosis of infectious diseases. Although surface-enhanced Raman spectroscopy (SERS) has recently emerged as a powerful solution for detecting diverse microorganisms, its widespread application has been ham...
Gespeichert in:
Veröffentlicht in: | Biosensors & bioelectronics 2022-04, Vol.202, p.113991-113991, Article 113991 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 113991 |
---|---|
container_issue | |
container_start_page | 113991 |
container_title | Biosensors & bioelectronics |
container_volume | 202 |
creator | Rho, Eojin Kim, Minjoon Cho, Seunghee H. Choi, Bongjae Park, Hyungjoon Jang, Hanhwi Jung, Yeon Sik Jo, Sungho |
description | Universal and fast bacterial detection technology is imperative for food safety analyses and diagnosis of infectious diseases. Although surface-enhanced Raman spectroscopy (SERS) has recently emerged as a powerful solution for detecting diverse microorganisms, its widespread application has been hampered by strong signals from surrounding media that overwhelm target signals and require time-consuming and tedious bacterial separation steps. By using SERS analysis boosted with a newly proposed deep learning model named dual-branch wide-kernel network (DualWKNet), a markedly simpler, faster, and effective route to classify signals of two common bacteria E. coli and S. epidermidis and their resident media without any separation procedures is demonstrated. With outstanding classification accuracies up to 98%, the synergistic combination of SERS and deep learning serves as an effective platform for “separation-free“ detection of bacteria in arbitrary media with short data acquisition times and small amounts of training data.
•Synergy of SERS and deep learning to rapidly identify bacterial signals.•Separation-free acquisition of bacterial spectra for analysis in arbitrary media.•Design of an optimal deep learning model for the analysis of bacterial Raman spectra.•High classification accuracies despite interfering signals and noise from media. |
doi_str_mv | 10.1016/j.bios.2022.113991 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2622964047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956566322000318</els_id><sourcerecordid>2622964047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-e64675f4d2046093598025e2094e69e9e032cdb1ad7b629916bf0becc595600c3</originalsourceid><addsrcrecordid>eNp9kMtKLDEURYMo2j5-wIFk6KTak2d1wMlFfIEg2DoOSeqUpK2uapNqL_79Tdt6hw7CGWTtDXsRcspgyoDpi8XUxyFPOXA-ZUwYw3bIhM1qUUku1C6ZgFG6UlqLA3KY8wIAamZgnxwIBfWMSTkhr3NcueTGOPRVmxCpd2HEFF1HY4P9GNsYvn5p7KlLPo7JpU-6xCY6-lFeg7iiPa5TSfQ4_h3SW-VdxobOr5_m1PWu-8wxH5O91nUZT77vEXm5uX6-uqseHm_vr_48VEEoPVaopa5VKxsOUoMRysyAK-RgJGqDBkHw0HjmmtprXhZr34LHEFSZChDEETnf9q7S8L7GPNplzAG7zvU4rLPlmnOjJci6oHyLhjTknLC1qxSXZZ1lYDeC7cJuBNuNYLsVXEJn3_1rXyT8j_wYLcDlFsCy8iNisjlE7EMRljCMthnib_3_AIljjH8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622964047</pqid></control><display><type>article</type><title>Separation-free bacterial identification in arbitrary media via deep neural network-based SERS analysis</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Rho, Eojin ; Kim, Minjoon ; Cho, Seunghee H. ; Choi, Bongjae ; Park, Hyungjoon ; Jang, Hanhwi ; Jung, Yeon Sik ; Jo, Sungho</creator><creatorcontrib>Rho, Eojin ; Kim, Minjoon ; Cho, Seunghee H. ; Choi, Bongjae ; Park, Hyungjoon ; Jang, Hanhwi ; Jung, Yeon Sik ; Jo, Sungho</creatorcontrib><description>Universal and fast bacterial detection technology is imperative for food safety analyses and diagnosis of infectious diseases. Although surface-enhanced Raman spectroscopy (SERS) has recently emerged as a powerful solution for detecting diverse microorganisms, its widespread application has been hampered by strong signals from surrounding media that overwhelm target signals and require time-consuming and tedious bacterial separation steps. By using SERS analysis boosted with a newly proposed deep learning model named dual-branch wide-kernel network (DualWKNet), a markedly simpler, faster, and effective route to classify signals of two common bacteria E. coli and S. epidermidis and their resident media without any separation procedures is demonstrated. With outstanding classification accuracies up to 98%, the synergistic combination of SERS and deep learning serves as an effective platform for “separation-free“ detection of bacteria in arbitrary media with short data acquisition times and small amounts of training data.
•Synergy of SERS and deep learning to rapidly identify bacterial signals.•Separation-free acquisition of bacterial spectra for analysis in arbitrary media.•Design of an optimal deep learning model for the analysis of bacterial Raman spectra.•High classification accuracies despite interfering signals and noise from media.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2022.113991</identifier><identifier>PMID: 35078144</identifier><language>eng</language><publisher>England: Elsevier B.V</publisher><subject>Bacterial detection ; Biosensing Techniques ; Deep learning ; E. coli ; Escherichia coli ; Neural Networks, Computer ; S. epidermidis ; Spectrum Analysis, Raman - methods ; Staphylococcus epidermidis ; Surface-enhanced Raman spectroscopy</subject><ispartof>Biosensors & bioelectronics, 2022-04, Vol.202, p.113991-113991, Article 113991</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright © 2022 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-e64675f4d2046093598025e2094e69e9e032cdb1ad7b629916bf0becc595600c3</citedby><cites>FETCH-LOGICAL-c356t-e64675f4d2046093598025e2094e69e9e032cdb1ad7b629916bf0becc595600c3</cites><orcidid>0000-0002-7618-362X ; 0000-0001-6078-6664</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bios.2022.113991$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35078144$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rho, Eojin</creatorcontrib><creatorcontrib>Kim, Minjoon</creatorcontrib><creatorcontrib>Cho, Seunghee H.</creatorcontrib><creatorcontrib>Choi, Bongjae</creatorcontrib><creatorcontrib>Park, Hyungjoon</creatorcontrib><creatorcontrib>Jang, Hanhwi</creatorcontrib><creatorcontrib>Jung, Yeon Sik</creatorcontrib><creatorcontrib>Jo, Sungho</creatorcontrib><title>Separation-free bacterial identification in arbitrary media via deep neural network-based SERS analysis</title><title>Biosensors & bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>Universal and fast bacterial detection technology is imperative for food safety analyses and diagnosis of infectious diseases. Although surface-enhanced Raman spectroscopy (SERS) has recently emerged as a powerful solution for detecting diverse microorganisms, its widespread application has been hampered by strong signals from surrounding media that overwhelm target signals and require time-consuming and tedious bacterial separation steps. By using SERS analysis boosted with a newly proposed deep learning model named dual-branch wide-kernel network (DualWKNet), a markedly simpler, faster, and effective route to classify signals of two common bacteria E. coli and S. epidermidis and their resident media without any separation procedures is demonstrated. With outstanding classification accuracies up to 98%, the synergistic combination of SERS and deep learning serves as an effective platform for “separation-free“ detection of bacteria in arbitrary media with short data acquisition times and small amounts of training data.
•Synergy of SERS and deep learning to rapidly identify bacterial signals.•Separation-free acquisition of bacterial spectra for analysis in arbitrary media.•Design of an optimal deep learning model for the analysis of bacterial Raman spectra.•High classification accuracies despite interfering signals and noise from media.</description><subject>Bacterial detection</subject><subject>Biosensing Techniques</subject><subject>Deep learning</subject><subject>E. coli</subject><subject>Escherichia coli</subject><subject>Neural Networks, Computer</subject><subject>S. epidermidis</subject><subject>Spectrum Analysis, Raman - methods</subject><subject>Staphylococcus epidermidis</subject><subject>Surface-enhanced Raman spectroscopy</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtKLDEURYMo2j5-wIFk6KTak2d1wMlFfIEg2DoOSeqUpK2uapNqL_79Tdt6hw7CGWTtDXsRcspgyoDpi8XUxyFPOXA-ZUwYw3bIhM1qUUku1C6ZgFG6UlqLA3KY8wIAamZgnxwIBfWMSTkhr3NcueTGOPRVmxCpd2HEFF1HY4P9GNsYvn5p7KlLPo7JpU-6xCY6-lFeg7iiPa5TSfQ4_h3SW-VdxobOr5_m1PWu-8wxH5O91nUZT77vEXm5uX6-uqseHm_vr_48VEEoPVaopa5VKxsOUoMRysyAK-RgJGqDBkHw0HjmmtprXhZr34LHEFSZChDEETnf9q7S8L7GPNplzAG7zvU4rLPlmnOjJci6oHyLhjTknLC1qxSXZZ1lYDeC7cJuBNuNYLsVXEJn3_1rXyT8j_wYLcDlFsCy8iNisjlE7EMRljCMthnib_3_AIljjH8</recordid><startdate>20220415</startdate><enddate>20220415</enddate><creator>Rho, Eojin</creator><creator>Kim, Minjoon</creator><creator>Cho, Seunghee H.</creator><creator>Choi, Bongjae</creator><creator>Park, Hyungjoon</creator><creator>Jang, Hanhwi</creator><creator>Jung, Yeon Sik</creator><creator>Jo, Sungho</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7618-362X</orcidid><orcidid>https://orcid.org/0000-0001-6078-6664</orcidid></search><sort><creationdate>20220415</creationdate><title>Separation-free bacterial identification in arbitrary media via deep neural network-based SERS analysis</title><author>Rho, Eojin ; Kim, Minjoon ; Cho, Seunghee H. ; Choi, Bongjae ; Park, Hyungjoon ; Jang, Hanhwi ; Jung, Yeon Sik ; Jo, Sungho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-e64675f4d2046093598025e2094e69e9e032cdb1ad7b629916bf0becc595600c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bacterial detection</topic><topic>Biosensing Techniques</topic><topic>Deep learning</topic><topic>E. coli</topic><topic>Escherichia coli</topic><topic>Neural Networks, Computer</topic><topic>S. epidermidis</topic><topic>Spectrum Analysis, Raman - methods</topic><topic>Staphylococcus epidermidis</topic><topic>Surface-enhanced Raman spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rho, Eojin</creatorcontrib><creatorcontrib>Kim, Minjoon</creatorcontrib><creatorcontrib>Cho, Seunghee H.</creatorcontrib><creatorcontrib>Choi, Bongjae</creatorcontrib><creatorcontrib>Park, Hyungjoon</creatorcontrib><creatorcontrib>Jang, Hanhwi</creatorcontrib><creatorcontrib>Jung, Yeon Sik</creatorcontrib><creatorcontrib>Jo, Sungho</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biosensors & bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rho, Eojin</au><au>Kim, Minjoon</au><au>Cho, Seunghee H.</au><au>Choi, Bongjae</au><au>Park, Hyungjoon</au><au>Jang, Hanhwi</au><au>Jung, Yeon Sik</au><au>Jo, Sungho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Separation-free bacterial identification in arbitrary media via deep neural network-based SERS analysis</atitle><jtitle>Biosensors & bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2022-04-15</date><risdate>2022</risdate><volume>202</volume><spage>113991</spage><epage>113991</epage><pages>113991-113991</pages><artnum>113991</artnum><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>Universal and fast bacterial detection technology is imperative for food safety analyses and diagnosis of infectious diseases. Although surface-enhanced Raman spectroscopy (SERS) has recently emerged as a powerful solution for detecting diverse microorganisms, its widespread application has been hampered by strong signals from surrounding media that overwhelm target signals and require time-consuming and tedious bacterial separation steps. By using SERS analysis boosted with a newly proposed deep learning model named dual-branch wide-kernel network (DualWKNet), a markedly simpler, faster, and effective route to classify signals of two common bacteria E. coli and S. epidermidis and their resident media without any separation procedures is demonstrated. With outstanding classification accuracies up to 98%, the synergistic combination of SERS and deep learning serves as an effective platform for “separation-free“ detection of bacteria in arbitrary media with short data acquisition times and small amounts of training data.
•Synergy of SERS and deep learning to rapidly identify bacterial signals.•Separation-free acquisition of bacterial spectra for analysis in arbitrary media.•Design of an optimal deep learning model for the analysis of bacterial Raman spectra.•High classification accuracies despite interfering signals and noise from media.</abstract><cop>England</cop><pub>Elsevier B.V</pub><pmid>35078144</pmid><doi>10.1016/j.bios.2022.113991</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7618-362X</orcidid><orcidid>https://orcid.org/0000-0001-6078-6664</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-5663 |
ispartof | Biosensors & bioelectronics, 2022-04, Vol.202, p.113991-113991, Article 113991 |
issn | 0956-5663 1873-4235 |
language | eng |
recordid | cdi_proquest_miscellaneous_2622964047 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Bacterial detection Biosensing Techniques Deep learning E. coli Escherichia coli Neural Networks, Computer S. epidermidis Spectrum Analysis, Raman - methods Staphylococcus epidermidis Surface-enhanced Raman spectroscopy |
title | Separation-free bacterial identification in arbitrary media via deep neural network-based SERS analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A46%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Separation-free%20bacterial%20identification%20in%20arbitrary%20media%20via%20deep%20neural%20network-based%20SERS%20analysis&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Rho,%20Eojin&rft.date=2022-04-15&rft.volume=202&rft.spage=113991&rft.epage=113991&rft.pages=113991-113991&rft.artnum=113991&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2022.113991&rft_dat=%3Cproquest_cross%3E2622964047%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622964047&rft_id=info:pmid/35078144&rft_els_id=S0956566322000318&rfr_iscdi=true |