Single-Cell Genomics-Based Molecular Algorithm for Early Cancer Detection

As one of the prime applications of liquid biopsy, the detection of tumor-derived whole cells and molecular markers is enabled in a noninvasive means before symptoms or hints from imaging procedures used for cancer screening. However, liquid biopsy is not a diagnostic test of malignant diseases per...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2022-02, Vol.94 (5), p.2607-2614
Hauptverfasser: Wang, Zhuo, Zhao, Yuyang, Shen, Xiaohan, Zhao, Yichun, Zhang, Ziyuan, Yin, Huming, Zhao, Xiaojun, Liu, Haitao, Shi, Qihui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2614
container_issue 5
container_start_page 2607
container_title Analytical chemistry (Washington)
container_volume 94
creator Wang, Zhuo
Zhao, Yuyang
Shen, Xiaohan
Zhao, Yichun
Zhang, Ziyuan
Yin, Huming
Zhao, Xiaojun
Liu, Haitao
Shi, Qihui
description As one of the prime applications of liquid biopsy, the detection of tumor-derived whole cells and molecular markers is enabled in a noninvasive means before symptoms or hints from imaging procedures used for cancer screening. However, liquid biopsy is not a diagnostic test of malignant diseases per se because it fails to establish a definitive cancer diagnosis. Although single-cell genomics provides a genome-wide genetic alternation landscape, it is technologically challenging to confirm cell malignancy of a suspicious cell in body fluids due to unknown technical noise of single-cell sequencing and genomic variation among cancer cells, especially when tumor tissues are unavailable for sequencing as the reference. To address this challenge, we report a molecular algorithm, named scCancerDx, for confirming cell malignancy based on single-cell copy number alternation profiles of suspicious cells from body fluids, leading to a definitive cancer diagnosis. The scCancerDx algorithm has been trained with normal cells and cancer cell lines and validated with single tumor cells disassociated from clinical samples. The established scCancerDx algorithm then validates hexokinase 2 (HK2) as an efficient metabolic function-associated marker of identifying disseminated tumor cells in different body fluids across many cancer types. The HK2-based test, together with scCancerDx, has been investigated for the early detection of bladder cancer (BC) at a preclinical phase by detecting high glycolytic HK2high tumor cells in urine. Early BC detection improves patient prognosis and avoids radical resection for enhancing life quality.
doi_str_mv 10.1021/acs.analchem.1c04968
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2622961058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2630306821</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-79e94d3c1e6e8c17261235939485a177b063dc80ca00b0cad4ed20b4999cf5463</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EoqXwDxCKxMKScrYTJx4hlFKpiAGYI8e5tqmcuNjJ0H9Pqn4MDCx3y_O-d3oIuaUwpsDoo9J-rBpl9ArrMdUQSZGekSGNGYQiTdk5GQIAD1kCMCBX3q8BKAUqLsmAx5AklEdDMvusmqXBMENjgik2tq60D5-VxzJ4twZ1Z5QLnszSuqpd1cHCumCinNkGmWo0uuAFW9RtZZtrcrFQxuPNYY_I9-vkK3sL5x_TWfY0DxVPRBsmEmVUck1RYKppwgRlPJZcRmmsaJIUIHipU9AKoOhnGWHJoIiklHoRR4KPyMO-d-PsT4e-zevK6_591aDtfM4EY1JQiNMevf-Drm3nemc7igMHkTLaU9Ge0s5673CRb1xVK7fNKeQ71XmvOj-qzg-q-9jdobwraixPoaPbHoA9sIufDv_b-QuX2Itd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2630306821</pqid></control><display><type>article</type><title>Single-Cell Genomics-Based Molecular Algorithm for Early Cancer Detection</title><source>MEDLINE</source><source>ACS Publications</source><creator>Wang, Zhuo ; Zhao, Yuyang ; Shen, Xiaohan ; Zhao, Yichun ; Zhang, Ziyuan ; Yin, Huming ; Zhao, Xiaojun ; Liu, Haitao ; Shi, Qihui</creator><creatorcontrib>Wang, Zhuo ; Zhao, Yuyang ; Shen, Xiaohan ; Zhao, Yichun ; Zhang, Ziyuan ; Yin, Huming ; Zhao, Xiaojun ; Liu, Haitao ; Shi, Qihui</creatorcontrib><description>As one of the prime applications of liquid biopsy, the detection of tumor-derived whole cells and molecular markers is enabled in a noninvasive means before symptoms or hints from imaging procedures used for cancer screening. However, liquid biopsy is not a diagnostic test of malignant diseases per se because it fails to establish a definitive cancer diagnosis. Although single-cell genomics provides a genome-wide genetic alternation landscape, it is technologically challenging to confirm cell malignancy of a suspicious cell in body fluids due to unknown technical noise of single-cell sequencing and genomic variation among cancer cells, especially when tumor tissues are unavailable for sequencing as the reference. To address this challenge, we report a molecular algorithm, named scCancerDx, for confirming cell malignancy based on single-cell copy number alternation profiles of suspicious cells from body fluids, leading to a definitive cancer diagnosis. The scCancerDx algorithm has been trained with normal cells and cancer cell lines and validated with single tumor cells disassociated from clinical samples. The established scCancerDx algorithm then validates hexokinase 2 (HK2) as an efficient metabolic function-associated marker of identifying disseminated tumor cells in different body fluids across many cancer types. The HK2-based test, together with scCancerDx, has been investigated for the early detection of bladder cancer (BC) at a preclinical phase by detecting high glycolytic HK2high tumor cells in urine. Early BC detection improves patient prognosis and avoids radical resection for enhancing life quality.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.1c04968</identifier><identifier>PMID: 35077134</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Biopsy ; Bladder cancer ; Body fluids ; Cancer ; Cancer screening ; Chemistry ; Copy number ; Diagnosis ; Early Detection of Cancer ; Genomics ; Genomics - methods ; Glycolysis ; Hexokinase ; Humans ; Malignancy ; Markers ; Medical diagnosis ; Medical screening ; Prognosis ; Quality of life ; Signs and symptoms ; Tumor cell lines ; Tumor cells ; Tumors ; Urinary Bladder Neoplasms - diagnosis</subject><ispartof>Analytical chemistry (Washington), 2022-02, Vol.94 (5), p.2607-2614</ispartof><rights>2022 American Chemical Society</rights><rights>Copyright American Chemical Society Feb 8, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-79e94d3c1e6e8c17261235939485a177b063dc80ca00b0cad4ed20b4999cf5463</citedby><cites>FETCH-LOGICAL-a376t-79e94d3c1e6e8c17261235939485a177b063dc80ca00b0cad4ed20b4999cf5463</cites><orcidid>0000-0001-8403-9452</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.1c04968$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.1c04968$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35077134$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Zhuo</creatorcontrib><creatorcontrib>Zhao, Yuyang</creatorcontrib><creatorcontrib>Shen, Xiaohan</creatorcontrib><creatorcontrib>Zhao, Yichun</creatorcontrib><creatorcontrib>Zhang, Ziyuan</creatorcontrib><creatorcontrib>Yin, Huming</creatorcontrib><creatorcontrib>Zhao, Xiaojun</creatorcontrib><creatorcontrib>Liu, Haitao</creatorcontrib><creatorcontrib>Shi, Qihui</creatorcontrib><title>Single-Cell Genomics-Based Molecular Algorithm for Early Cancer Detection</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>As one of the prime applications of liquid biopsy, the detection of tumor-derived whole cells and molecular markers is enabled in a noninvasive means before symptoms or hints from imaging procedures used for cancer screening. However, liquid biopsy is not a diagnostic test of malignant diseases per se because it fails to establish a definitive cancer diagnosis. Although single-cell genomics provides a genome-wide genetic alternation landscape, it is technologically challenging to confirm cell malignancy of a suspicious cell in body fluids due to unknown technical noise of single-cell sequencing and genomic variation among cancer cells, especially when tumor tissues are unavailable for sequencing as the reference. To address this challenge, we report a molecular algorithm, named scCancerDx, for confirming cell malignancy based on single-cell copy number alternation profiles of suspicious cells from body fluids, leading to a definitive cancer diagnosis. The scCancerDx algorithm has been trained with normal cells and cancer cell lines and validated with single tumor cells disassociated from clinical samples. The established scCancerDx algorithm then validates hexokinase 2 (HK2) as an efficient metabolic function-associated marker of identifying disseminated tumor cells in different body fluids across many cancer types. The HK2-based test, together with scCancerDx, has been investigated for the early detection of bladder cancer (BC) at a preclinical phase by detecting high glycolytic HK2high tumor cells in urine. Early BC detection improves patient prognosis and avoids radical resection for enhancing life quality.</description><subject>Algorithms</subject><subject>Biopsy</subject><subject>Bladder cancer</subject><subject>Body fluids</subject><subject>Cancer</subject><subject>Cancer screening</subject><subject>Chemistry</subject><subject>Copy number</subject><subject>Diagnosis</subject><subject>Early Detection of Cancer</subject><subject>Genomics</subject><subject>Genomics - methods</subject><subject>Glycolysis</subject><subject>Hexokinase</subject><subject>Humans</subject><subject>Malignancy</subject><subject>Markers</subject><subject>Medical diagnosis</subject><subject>Medical screening</subject><subject>Prognosis</subject><subject>Quality of life</subject><subject>Signs and symptoms</subject><subject>Tumor cell lines</subject><subject>Tumor cells</subject><subject>Tumors</subject><subject>Urinary Bladder Neoplasms - diagnosis</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1PwzAQhi0EoqXwDxCKxMKScrYTJx4hlFKpiAGYI8e5tqmcuNjJ0H9Pqn4MDCx3y_O-d3oIuaUwpsDoo9J-rBpl9ArrMdUQSZGekSGNGYQiTdk5GQIAD1kCMCBX3q8BKAUqLsmAx5AklEdDMvusmqXBMENjgik2tq60D5-VxzJ4twZ1Z5QLnszSuqpd1cHCumCinNkGmWo0uuAFW9RtZZtrcrFQxuPNYY_I9-vkK3sL5x_TWfY0DxVPRBsmEmVUck1RYKppwgRlPJZcRmmsaJIUIHipU9AKoOhnGWHJoIiklHoRR4KPyMO-d-PsT4e-zevK6_591aDtfM4EY1JQiNMevf-Drm3nemc7igMHkTLaU9Ge0s5673CRb1xVK7fNKeQ71XmvOj-qzg-q-9jdobwraixPoaPbHoA9sIufDv_b-QuX2Itd</recordid><startdate>20220208</startdate><enddate>20220208</enddate><creator>Wang, Zhuo</creator><creator>Zhao, Yuyang</creator><creator>Shen, Xiaohan</creator><creator>Zhao, Yichun</creator><creator>Zhang, Ziyuan</creator><creator>Yin, Huming</creator><creator>Zhao, Xiaojun</creator><creator>Liu, Haitao</creator><creator>Shi, Qihui</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8403-9452</orcidid></search><sort><creationdate>20220208</creationdate><title>Single-Cell Genomics-Based Molecular Algorithm for Early Cancer Detection</title><author>Wang, Zhuo ; Zhao, Yuyang ; Shen, Xiaohan ; Zhao, Yichun ; Zhang, Ziyuan ; Yin, Huming ; Zhao, Xiaojun ; Liu, Haitao ; Shi, Qihui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-79e94d3c1e6e8c17261235939485a177b063dc80ca00b0cad4ed20b4999cf5463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Biopsy</topic><topic>Bladder cancer</topic><topic>Body fluids</topic><topic>Cancer</topic><topic>Cancer screening</topic><topic>Chemistry</topic><topic>Copy number</topic><topic>Diagnosis</topic><topic>Early Detection of Cancer</topic><topic>Genomics</topic><topic>Genomics - methods</topic><topic>Glycolysis</topic><topic>Hexokinase</topic><topic>Humans</topic><topic>Malignancy</topic><topic>Markers</topic><topic>Medical diagnosis</topic><topic>Medical screening</topic><topic>Prognosis</topic><topic>Quality of life</topic><topic>Signs and symptoms</topic><topic>Tumor cell lines</topic><topic>Tumor cells</topic><topic>Tumors</topic><topic>Urinary Bladder Neoplasms - diagnosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhuo</creatorcontrib><creatorcontrib>Zhao, Yuyang</creatorcontrib><creatorcontrib>Shen, Xiaohan</creatorcontrib><creatorcontrib>Zhao, Yichun</creatorcontrib><creatorcontrib>Zhang, Ziyuan</creatorcontrib><creatorcontrib>Yin, Huming</creatorcontrib><creatorcontrib>Zhao, Xiaojun</creatorcontrib><creatorcontrib>Liu, Haitao</creatorcontrib><creatorcontrib>Shi, Qihui</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhuo</au><au>Zhao, Yuyang</au><au>Shen, Xiaohan</au><au>Zhao, Yichun</au><au>Zhang, Ziyuan</au><au>Yin, Huming</au><au>Zhao, Xiaojun</au><au>Liu, Haitao</au><au>Shi, Qihui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-Cell Genomics-Based Molecular Algorithm for Early Cancer Detection</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2022-02-08</date><risdate>2022</risdate><volume>94</volume><issue>5</issue><spage>2607</spage><epage>2614</epage><pages>2607-2614</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>As one of the prime applications of liquid biopsy, the detection of tumor-derived whole cells and molecular markers is enabled in a noninvasive means before symptoms or hints from imaging procedures used for cancer screening. However, liquid biopsy is not a diagnostic test of malignant diseases per se because it fails to establish a definitive cancer diagnosis. Although single-cell genomics provides a genome-wide genetic alternation landscape, it is technologically challenging to confirm cell malignancy of a suspicious cell in body fluids due to unknown technical noise of single-cell sequencing and genomic variation among cancer cells, especially when tumor tissues are unavailable for sequencing as the reference. To address this challenge, we report a molecular algorithm, named scCancerDx, for confirming cell malignancy based on single-cell copy number alternation profiles of suspicious cells from body fluids, leading to a definitive cancer diagnosis. The scCancerDx algorithm has been trained with normal cells and cancer cell lines and validated with single tumor cells disassociated from clinical samples. The established scCancerDx algorithm then validates hexokinase 2 (HK2) as an efficient metabolic function-associated marker of identifying disseminated tumor cells in different body fluids across many cancer types. The HK2-based test, together with scCancerDx, has been investigated for the early detection of bladder cancer (BC) at a preclinical phase by detecting high glycolytic HK2high tumor cells in urine. Early BC detection improves patient prognosis and avoids radical resection for enhancing life quality.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35077134</pmid><doi>10.1021/acs.analchem.1c04968</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8403-9452</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2022-02, Vol.94 (5), p.2607-2614
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_2622961058
source MEDLINE; ACS Publications
subjects Algorithms
Biopsy
Bladder cancer
Body fluids
Cancer
Cancer screening
Chemistry
Copy number
Diagnosis
Early Detection of Cancer
Genomics
Genomics - methods
Glycolysis
Hexokinase
Humans
Malignancy
Markers
Medical diagnosis
Medical screening
Prognosis
Quality of life
Signs and symptoms
Tumor cell lines
Tumor cells
Tumors
Urinary Bladder Neoplasms - diagnosis
title Single-Cell Genomics-Based Molecular Algorithm for Early Cancer Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A22%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-Cell%20Genomics-Based%20Molecular%20Algorithm%20for%20Early%20Cancer%20Detection&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Wang,%20Zhuo&rft.date=2022-02-08&rft.volume=94&rft.issue=5&rft.spage=2607&rft.epage=2614&rft.pages=2607-2614&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.1c04968&rft_dat=%3Cproquest_cross%3E2630306821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2630306821&rft_id=info:pmid/35077134&rfr_iscdi=true