Single-Cell Genomics-Based Molecular Algorithm for Early Cancer Detection
As one of the prime applications of liquid biopsy, the detection of tumor-derived whole cells and molecular markers is enabled in a noninvasive means before symptoms or hints from imaging procedures used for cancer screening. However, liquid biopsy is not a diagnostic test of malignant diseases per...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2022-02, Vol.94 (5), p.2607-2614 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2614 |
---|---|
container_issue | 5 |
container_start_page | 2607 |
container_title | Analytical chemistry (Washington) |
container_volume | 94 |
creator | Wang, Zhuo Zhao, Yuyang Shen, Xiaohan Zhao, Yichun Zhang, Ziyuan Yin, Huming Zhao, Xiaojun Liu, Haitao Shi, Qihui |
description | As one of the prime applications of liquid biopsy, the detection of tumor-derived whole cells and molecular markers is enabled in a noninvasive means before symptoms or hints from imaging procedures used for cancer screening. However, liquid biopsy is not a diagnostic test of malignant diseases per se because it fails to establish a definitive cancer diagnosis. Although single-cell genomics provides a genome-wide genetic alternation landscape, it is technologically challenging to confirm cell malignancy of a suspicious cell in body fluids due to unknown technical noise of single-cell sequencing and genomic variation among cancer cells, especially when tumor tissues are unavailable for sequencing as the reference. To address this challenge, we report a molecular algorithm, named scCancerDx, for confirming cell malignancy based on single-cell copy number alternation profiles of suspicious cells from body fluids, leading to a definitive cancer diagnosis. The scCancerDx algorithm has been trained with normal cells and cancer cell lines and validated with single tumor cells disassociated from clinical samples. The established scCancerDx algorithm then validates hexokinase 2 (HK2) as an efficient metabolic function-associated marker of identifying disseminated tumor cells in different body fluids across many cancer types. The HK2-based test, together with scCancerDx, has been investigated for the early detection of bladder cancer (BC) at a preclinical phase by detecting high glycolytic HK2high tumor cells in urine. Early BC detection improves patient prognosis and avoids radical resection for enhancing life quality. |
doi_str_mv | 10.1021/acs.analchem.1c04968 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2622961058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2630306821</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-79e94d3c1e6e8c17261235939485a177b063dc80ca00b0cad4ed20b4999cf5463</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EoqXwDxCKxMKScrYTJx4hlFKpiAGYI8e5tqmcuNjJ0H9Pqn4MDCx3y_O-d3oIuaUwpsDoo9J-rBpl9ArrMdUQSZGekSGNGYQiTdk5GQIAD1kCMCBX3q8BKAUqLsmAx5AklEdDMvusmqXBMENjgik2tq60D5-VxzJ4twZ1Z5QLnszSuqpd1cHCumCinNkGmWo0uuAFW9RtZZtrcrFQxuPNYY_I9-vkK3sL5x_TWfY0DxVPRBsmEmVUck1RYKppwgRlPJZcRmmsaJIUIHipU9AKoOhnGWHJoIiklHoRR4KPyMO-d-PsT4e-zevK6_591aDtfM4EY1JQiNMevf-Drm3nemc7igMHkTLaU9Ge0s5673CRb1xVK7fNKeQ71XmvOj-qzg-q-9jdobwraixPoaPbHoA9sIufDv_b-QuX2Itd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2630306821</pqid></control><display><type>article</type><title>Single-Cell Genomics-Based Molecular Algorithm for Early Cancer Detection</title><source>MEDLINE</source><source>ACS Publications</source><creator>Wang, Zhuo ; Zhao, Yuyang ; Shen, Xiaohan ; Zhao, Yichun ; Zhang, Ziyuan ; Yin, Huming ; Zhao, Xiaojun ; Liu, Haitao ; Shi, Qihui</creator><creatorcontrib>Wang, Zhuo ; Zhao, Yuyang ; Shen, Xiaohan ; Zhao, Yichun ; Zhang, Ziyuan ; Yin, Huming ; Zhao, Xiaojun ; Liu, Haitao ; Shi, Qihui</creatorcontrib><description>As one of the prime applications of liquid biopsy, the detection of tumor-derived whole cells and molecular markers is enabled in a noninvasive means before symptoms or hints from imaging procedures used for cancer screening. However, liquid biopsy is not a diagnostic test of malignant diseases per se because it fails to establish a definitive cancer diagnosis. Although single-cell genomics provides a genome-wide genetic alternation landscape, it is technologically challenging to confirm cell malignancy of a suspicious cell in body fluids due to unknown technical noise of single-cell sequencing and genomic variation among cancer cells, especially when tumor tissues are unavailable for sequencing as the reference. To address this challenge, we report a molecular algorithm, named scCancerDx, for confirming cell malignancy based on single-cell copy number alternation profiles of suspicious cells from body fluids, leading to a definitive cancer diagnosis. The scCancerDx algorithm has been trained with normal cells and cancer cell lines and validated with single tumor cells disassociated from clinical samples. The established scCancerDx algorithm then validates hexokinase 2 (HK2) as an efficient metabolic function-associated marker of identifying disseminated tumor cells in different body fluids across many cancer types. The HK2-based test, together with scCancerDx, has been investigated for the early detection of bladder cancer (BC) at a preclinical phase by detecting high glycolytic HK2high tumor cells in urine. Early BC detection improves patient prognosis and avoids radical resection for enhancing life quality.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.1c04968</identifier><identifier>PMID: 35077134</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Biopsy ; Bladder cancer ; Body fluids ; Cancer ; Cancer screening ; Chemistry ; Copy number ; Diagnosis ; Early Detection of Cancer ; Genomics ; Genomics - methods ; Glycolysis ; Hexokinase ; Humans ; Malignancy ; Markers ; Medical diagnosis ; Medical screening ; Prognosis ; Quality of life ; Signs and symptoms ; Tumor cell lines ; Tumor cells ; Tumors ; Urinary Bladder Neoplasms - diagnosis</subject><ispartof>Analytical chemistry (Washington), 2022-02, Vol.94 (5), p.2607-2614</ispartof><rights>2022 American Chemical Society</rights><rights>Copyright American Chemical Society Feb 8, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-79e94d3c1e6e8c17261235939485a177b063dc80ca00b0cad4ed20b4999cf5463</citedby><cites>FETCH-LOGICAL-a376t-79e94d3c1e6e8c17261235939485a177b063dc80ca00b0cad4ed20b4999cf5463</cites><orcidid>0000-0001-8403-9452</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.1c04968$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.1c04968$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35077134$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Zhuo</creatorcontrib><creatorcontrib>Zhao, Yuyang</creatorcontrib><creatorcontrib>Shen, Xiaohan</creatorcontrib><creatorcontrib>Zhao, Yichun</creatorcontrib><creatorcontrib>Zhang, Ziyuan</creatorcontrib><creatorcontrib>Yin, Huming</creatorcontrib><creatorcontrib>Zhao, Xiaojun</creatorcontrib><creatorcontrib>Liu, Haitao</creatorcontrib><creatorcontrib>Shi, Qihui</creatorcontrib><title>Single-Cell Genomics-Based Molecular Algorithm for Early Cancer Detection</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>As one of the prime applications of liquid biopsy, the detection of tumor-derived whole cells and molecular markers is enabled in a noninvasive means before symptoms or hints from imaging procedures used for cancer screening. However, liquid biopsy is not a diagnostic test of malignant diseases per se because it fails to establish a definitive cancer diagnosis. Although single-cell genomics provides a genome-wide genetic alternation landscape, it is technologically challenging to confirm cell malignancy of a suspicious cell in body fluids due to unknown technical noise of single-cell sequencing and genomic variation among cancer cells, especially when tumor tissues are unavailable for sequencing as the reference. To address this challenge, we report a molecular algorithm, named scCancerDx, for confirming cell malignancy based on single-cell copy number alternation profiles of suspicious cells from body fluids, leading to a definitive cancer diagnosis. The scCancerDx algorithm has been trained with normal cells and cancer cell lines and validated with single tumor cells disassociated from clinical samples. The established scCancerDx algorithm then validates hexokinase 2 (HK2) as an efficient metabolic function-associated marker of identifying disseminated tumor cells in different body fluids across many cancer types. The HK2-based test, together with scCancerDx, has been investigated for the early detection of bladder cancer (BC) at a preclinical phase by detecting high glycolytic HK2high tumor cells in urine. Early BC detection improves patient prognosis and avoids radical resection for enhancing life quality.</description><subject>Algorithms</subject><subject>Biopsy</subject><subject>Bladder cancer</subject><subject>Body fluids</subject><subject>Cancer</subject><subject>Cancer screening</subject><subject>Chemistry</subject><subject>Copy number</subject><subject>Diagnosis</subject><subject>Early Detection of Cancer</subject><subject>Genomics</subject><subject>Genomics - methods</subject><subject>Glycolysis</subject><subject>Hexokinase</subject><subject>Humans</subject><subject>Malignancy</subject><subject>Markers</subject><subject>Medical diagnosis</subject><subject>Medical screening</subject><subject>Prognosis</subject><subject>Quality of life</subject><subject>Signs and symptoms</subject><subject>Tumor cell lines</subject><subject>Tumor cells</subject><subject>Tumors</subject><subject>Urinary Bladder Neoplasms - diagnosis</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1PwzAQhi0EoqXwDxCKxMKScrYTJx4hlFKpiAGYI8e5tqmcuNjJ0H9Pqn4MDCx3y_O-d3oIuaUwpsDoo9J-rBpl9ArrMdUQSZGekSGNGYQiTdk5GQIAD1kCMCBX3q8BKAUqLsmAx5AklEdDMvusmqXBMENjgik2tq60D5-VxzJ4twZ1Z5QLnszSuqpd1cHCumCinNkGmWo0uuAFW9RtZZtrcrFQxuPNYY_I9-vkK3sL5x_TWfY0DxVPRBsmEmVUck1RYKppwgRlPJZcRmmsaJIUIHipU9AKoOhnGWHJoIiklHoRR4KPyMO-d-PsT4e-zevK6_591aDtfM4EY1JQiNMevf-Drm3nemc7igMHkTLaU9Ge0s5673CRb1xVK7fNKeQ71XmvOj-qzg-q-9jdobwraixPoaPbHoA9sIufDv_b-QuX2Itd</recordid><startdate>20220208</startdate><enddate>20220208</enddate><creator>Wang, Zhuo</creator><creator>Zhao, Yuyang</creator><creator>Shen, Xiaohan</creator><creator>Zhao, Yichun</creator><creator>Zhang, Ziyuan</creator><creator>Yin, Huming</creator><creator>Zhao, Xiaojun</creator><creator>Liu, Haitao</creator><creator>Shi, Qihui</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8403-9452</orcidid></search><sort><creationdate>20220208</creationdate><title>Single-Cell Genomics-Based Molecular Algorithm for Early Cancer Detection</title><author>Wang, Zhuo ; Zhao, Yuyang ; Shen, Xiaohan ; Zhao, Yichun ; Zhang, Ziyuan ; Yin, Huming ; Zhao, Xiaojun ; Liu, Haitao ; Shi, Qihui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-79e94d3c1e6e8c17261235939485a177b063dc80ca00b0cad4ed20b4999cf5463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Biopsy</topic><topic>Bladder cancer</topic><topic>Body fluids</topic><topic>Cancer</topic><topic>Cancer screening</topic><topic>Chemistry</topic><topic>Copy number</topic><topic>Diagnosis</topic><topic>Early Detection of Cancer</topic><topic>Genomics</topic><topic>Genomics - methods</topic><topic>Glycolysis</topic><topic>Hexokinase</topic><topic>Humans</topic><topic>Malignancy</topic><topic>Markers</topic><topic>Medical diagnosis</topic><topic>Medical screening</topic><topic>Prognosis</topic><topic>Quality of life</topic><topic>Signs and symptoms</topic><topic>Tumor cell lines</topic><topic>Tumor cells</topic><topic>Tumors</topic><topic>Urinary Bladder Neoplasms - diagnosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhuo</creatorcontrib><creatorcontrib>Zhao, Yuyang</creatorcontrib><creatorcontrib>Shen, Xiaohan</creatorcontrib><creatorcontrib>Zhao, Yichun</creatorcontrib><creatorcontrib>Zhang, Ziyuan</creatorcontrib><creatorcontrib>Yin, Huming</creatorcontrib><creatorcontrib>Zhao, Xiaojun</creatorcontrib><creatorcontrib>Liu, Haitao</creatorcontrib><creatorcontrib>Shi, Qihui</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhuo</au><au>Zhao, Yuyang</au><au>Shen, Xiaohan</au><au>Zhao, Yichun</au><au>Zhang, Ziyuan</au><au>Yin, Huming</au><au>Zhao, Xiaojun</au><au>Liu, Haitao</au><au>Shi, Qihui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-Cell Genomics-Based Molecular Algorithm for Early Cancer Detection</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2022-02-08</date><risdate>2022</risdate><volume>94</volume><issue>5</issue><spage>2607</spage><epage>2614</epage><pages>2607-2614</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>As one of the prime applications of liquid biopsy, the detection of tumor-derived whole cells and molecular markers is enabled in a noninvasive means before symptoms or hints from imaging procedures used for cancer screening. However, liquid biopsy is not a diagnostic test of malignant diseases per se because it fails to establish a definitive cancer diagnosis. Although single-cell genomics provides a genome-wide genetic alternation landscape, it is technologically challenging to confirm cell malignancy of a suspicious cell in body fluids due to unknown technical noise of single-cell sequencing and genomic variation among cancer cells, especially when tumor tissues are unavailable for sequencing as the reference. To address this challenge, we report a molecular algorithm, named scCancerDx, for confirming cell malignancy based on single-cell copy number alternation profiles of suspicious cells from body fluids, leading to a definitive cancer diagnosis. The scCancerDx algorithm has been trained with normal cells and cancer cell lines and validated with single tumor cells disassociated from clinical samples. The established scCancerDx algorithm then validates hexokinase 2 (HK2) as an efficient metabolic function-associated marker of identifying disseminated tumor cells in different body fluids across many cancer types. The HK2-based test, together with scCancerDx, has been investigated for the early detection of bladder cancer (BC) at a preclinical phase by detecting high glycolytic HK2high tumor cells in urine. Early BC detection improves patient prognosis and avoids radical resection for enhancing life quality.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35077134</pmid><doi>10.1021/acs.analchem.1c04968</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8403-9452</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2022-02, Vol.94 (5), p.2607-2614 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_2622961058 |
source | MEDLINE; ACS Publications |
subjects | Algorithms Biopsy Bladder cancer Body fluids Cancer Cancer screening Chemistry Copy number Diagnosis Early Detection of Cancer Genomics Genomics - methods Glycolysis Hexokinase Humans Malignancy Markers Medical diagnosis Medical screening Prognosis Quality of life Signs and symptoms Tumor cell lines Tumor cells Tumors Urinary Bladder Neoplasms - diagnosis |
title | Single-Cell Genomics-Based Molecular Algorithm for Early Cancer Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A22%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-Cell%20Genomics-Based%20Molecular%20Algorithm%20for%20Early%20Cancer%20Detection&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Wang,%20Zhuo&rft.date=2022-02-08&rft.volume=94&rft.issue=5&rft.spage=2607&rft.epage=2614&rft.pages=2607-2614&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.1c04968&rft_dat=%3Cproquest_cross%3E2630306821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2630306821&rft_id=info:pmid/35077134&rfr_iscdi=true |