The numerical solution of bilinear data reconciliation problems using unconstrained optimization methods
A new approach to solving steady state data reconciliation problems with bilinear constraints is proposed. Previously it was shown by Crowe that these problems can be solved using the method of matrix projection. In this work the objective function and its constraints are put into unconstrained form...
Gespeichert in:
Veröffentlicht in: | Computers & chemical engineering 1996, Vol.20, p.S727-S732 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | S732 |
---|---|
container_issue | |
container_start_page | S727 |
container_title | Computers & chemical engineering |
container_volume | 20 |
creator | Schraa, Oliver J. Crowe, Cameron M. |
description | A new approach to solving steady state data reconciliation problems with bilinear constraints is proposed. Previously it was shown by Crowe that these problems can be solved using the method of matrix projection. In this work the objective function and its constraints are put into unconstrained form using Lagrange multipliers. Unconstrained optimization methods based on analytical derivatives are then used to solve the unconstrained formulation.
The unconstrained approach is tested on two different reconciliation problems from the literature using a number of Newton-type unconstrained optimization methods. The unconstrained methods are compared in terms of robustness and efficiency in solving the example problems. The performance of the unconstrained approach is compared to that of the method of matrix projection and the projected Lagrangian algorithm implemented in GAMS/MINOS. |
doi_str_mv | 10.1016/0098-1354(96)00130-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26228972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0098135496001305</els_id><sourcerecordid>26228972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-2fbe9b40a453506d01c0f71bcb350b197f76d4d430307354097256f836a4cb4f3</originalsourceid><addsrcrecordid>eNp9kE1PxCAQhonRxHX1H3jgYIweqkOhtL2YmI1fySZe1jOhFFxMW1agJvrrpe5mj57IMM87MA9C5wRuCBB-C1BXGaEFu6r5NQChkBUHaEaqkmaMlsUhmu2RY3QSwgcA5KyqZmi9Wms8jL32VskOB9eN0boBO4Mb29lBS49bGSX2WrlBpSv5199413S6D3gMdnjH45C6IXqZEi12m2h7-7Mlex3Xrg2n6MjILuiz3TlHb48Pq8Vztnx9elncLzNFOYtZbhpdNwwkK2gBvAWiwJSkUU0qG1KXpuQtaxkFCmVaB-oyL7ipKJdMNczQObrczk0__Bx1iKK3Qemuk4N2YxA5z_MqhRLItqDyLgSvjdh420v_LQiISauYnInJmainImkVRYpd7ObLkIwZL5OVsM9SQoAVPGF3W0ynXb-s9iIoqwelW5tMRtE6-_87v5ztjQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26228972</pqid></control><display><type>article</type><title>The numerical solution of bilinear data reconciliation problems using unconstrained optimization methods</title><source>Elsevier ScienceDirect Journals</source><creator>Schraa, Oliver J. ; Crowe, Cameron M.</creator><creatorcontrib>Schraa, Oliver J. ; Crowe, Cameron M.</creatorcontrib><description>A new approach to solving steady state data reconciliation problems with bilinear constraints is proposed. Previously it was shown by Crowe that these problems can be solved using the method of matrix projection. In this work the objective function and its constraints are put into unconstrained form using Lagrange multipliers. Unconstrained optimization methods based on analytical derivatives are then used to solve the unconstrained formulation.
The unconstrained approach is tested on two different reconciliation problems from the literature using a number of Newton-type unconstrained optimization methods. The unconstrained methods are compared in terms of robustness and efficiency in solving the example problems. The performance of the unconstrained approach is compared to that of the method of matrix projection and the projected Lagrangian algorithm implemented in GAMS/MINOS.</description><identifier>ISSN: 0098-1354</identifier><identifier>EISSN: 1873-4375</identifier><identifier>DOI: 10.1016/0098-1354(96)00130-5</identifier><identifier>CODEN: CCENDW</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Chemical engineering ; Exact sciences and technology ; Metrology, automation</subject><ispartof>Computers & chemical engineering, 1996, Vol.20, p.S727-S732</ispartof><rights>1996</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-2fbe9b40a453506d01c0f71bcb350b197f76d4d430307354097256f836a4cb4f3</citedby><cites>FETCH-LOGICAL-c364t-2fbe9b40a453506d01c0f71bcb350b197f76d4d430307354097256f836a4cb4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0098135496001305$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,4010,4036,4037,23909,23910,25118,27900,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3110456$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schraa, Oliver J.</creatorcontrib><creatorcontrib>Crowe, Cameron M.</creatorcontrib><title>The numerical solution of bilinear data reconciliation problems using unconstrained optimization methods</title><title>Computers & chemical engineering</title><description>A new approach to solving steady state data reconciliation problems with bilinear constraints is proposed. Previously it was shown by Crowe that these problems can be solved using the method of matrix projection. In this work the objective function and its constraints are put into unconstrained form using Lagrange multipliers. Unconstrained optimization methods based on analytical derivatives are then used to solve the unconstrained formulation.
The unconstrained approach is tested on two different reconciliation problems from the literature using a number of Newton-type unconstrained optimization methods. The unconstrained methods are compared in terms of robustness and efficiency in solving the example problems. The performance of the unconstrained approach is compared to that of the method of matrix projection and the projected Lagrangian algorithm implemented in GAMS/MINOS.</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><subject>Metrology, automation</subject><issn>0098-1354</issn><issn>1873-4375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PxCAQhonRxHX1H3jgYIweqkOhtL2YmI1fySZe1jOhFFxMW1agJvrrpe5mj57IMM87MA9C5wRuCBB-C1BXGaEFu6r5NQChkBUHaEaqkmaMlsUhmu2RY3QSwgcA5KyqZmi9Wms8jL32VskOB9eN0boBO4Mb29lBS49bGSX2WrlBpSv5199413S6D3gMdnjH45C6IXqZEi12m2h7-7Mlex3Xrg2n6MjILuiz3TlHb48Pq8Vztnx9elncLzNFOYtZbhpdNwwkK2gBvAWiwJSkUU0qG1KXpuQtaxkFCmVaB-oyL7ipKJdMNczQObrczk0__Bx1iKK3Qemuk4N2YxA5z_MqhRLItqDyLgSvjdh420v_LQiISauYnInJmainImkVRYpd7ObLkIwZL5OVsM9SQoAVPGF3W0ynXb-s9iIoqwelW5tMRtE6-_87v5ztjQw</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Schraa, Oliver J.</creator><creator>Crowe, Cameron M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1996</creationdate><title>The numerical solution of bilinear data reconciliation problems using unconstrained optimization methods</title><author>Schraa, Oliver J. ; Crowe, Cameron M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-2fbe9b40a453506d01c0f71bcb350b197f76d4d430307354097256f836a4cb4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><topic>Metrology, automation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schraa, Oliver J.</creatorcontrib><creatorcontrib>Crowe, Cameron M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schraa, Oliver J.</au><au>Crowe, Cameron M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The numerical solution of bilinear data reconciliation problems using unconstrained optimization methods</atitle><jtitle>Computers & chemical engineering</jtitle><date>1996</date><risdate>1996</risdate><volume>20</volume><spage>S727</spage><epage>S732</epage><pages>S727-S732</pages><issn>0098-1354</issn><eissn>1873-4375</eissn><coden>CCENDW</coden><abstract>A new approach to solving steady state data reconciliation problems with bilinear constraints is proposed. Previously it was shown by Crowe that these problems can be solved using the method of matrix projection. In this work the objective function and its constraints are put into unconstrained form using Lagrange multipliers. Unconstrained optimization methods based on analytical derivatives are then used to solve the unconstrained formulation.
The unconstrained approach is tested on two different reconciliation problems from the literature using a number of Newton-type unconstrained optimization methods. The unconstrained methods are compared in terms of robustness and efficiency in solving the example problems. The performance of the unconstrained approach is compared to that of the method of matrix projection and the projected Lagrangian algorithm implemented in GAMS/MINOS.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/0098-1354(96)00130-5</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-1354 |
ispartof | Computers & chemical engineering, 1996, Vol.20, p.S727-S732 |
issn | 0098-1354 1873-4375 |
language | eng |
recordid | cdi_proquest_miscellaneous_26228972 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Chemical engineering Exact sciences and technology Metrology, automation |
title | The numerical solution of bilinear data reconciliation problems using unconstrained optimization methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T12%3A48%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20numerical%20solution%20of%20bilinear%20data%20reconciliation%20problems%20using%20unconstrained%20optimization%20methods&rft.jtitle=Computers%20&%20chemical%20engineering&rft.au=Schraa,%20Oliver%20J.&rft.date=1996&rft.volume=20&rft.spage=S727&rft.epage=S732&rft.pages=S727-S732&rft.issn=0098-1354&rft.eissn=1873-4375&rft.coden=CCENDW&rft_id=info:doi/10.1016/0098-1354(96)00130-5&rft_dat=%3Cproquest_cross%3E26228972%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26228972&rft_id=info:pmid/&rft_els_id=0098135496001305&rfr_iscdi=true |