The numerical solution of bilinear data reconciliation problems using unconstrained optimization methods

A new approach to solving steady state data reconciliation problems with bilinear constraints is proposed. Previously it was shown by Crowe that these problems can be solved using the method of matrix projection. In this work the objective function and its constraints are put into unconstrained form...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & chemical engineering 1996, Vol.20, p.S727-S732
Hauptverfasser: Schraa, Oliver J., Crowe, Cameron M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page S732
container_issue
container_start_page S727
container_title Computers & chemical engineering
container_volume 20
creator Schraa, Oliver J.
Crowe, Cameron M.
description A new approach to solving steady state data reconciliation problems with bilinear constraints is proposed. Previously it was shown by Crowe that these problems can be solved using the method of matrix projection. In this work the objective function and its constraints are put into unconstrained form using Lagrange multipliers. Unconstrained optimization methods based on analytical derivatives are then used to solve the unconstrained formulation. The unconstrained approach is tested on two different reconciliation problems from the literature using a number of Newton-type unconstrained optimization methods. The unconstrained methods are compared in terms of robustness and efficiency in solving the example problems. The performance of the unconstrained approach is compared to that of the method of matrix projection and the projected Lagrangian algorithm implemented in GAMS/MINOS.
doi_str_mv 10.1016/0098-1354(96)00130-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26228972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0098135496001305</els_id><sourcerecordid>26228972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-2fbe9b40a453506d01c0f71bcb350b197f76d4d430307354097256f836a4cb4f3</originalsourceid><addsrcrecordid>eNp9kE1PxCAQhonRxHX1H3jgYIweqkOhtL2YmI1fySZe1jOhFFxMW1agJvrrpe5mj57IMM87MA9C5wRuCBB-C1BXGaEFu6r5NQChkBUHaEaqkmaMlsUhmu2RY3QSwgcA5KyqZmi9Wms8jL32VskOB9eN0boBO4Mb29lBS49bGSX2WrlBpSv5199413S6D3gMdnjH45C6IXqZEi12m2h7-7Mlex3Xrg2n6MjILuiz3TlHb48Pq8Vztnx9elncLzNFOYtZbhpdNwwkK2gBvAWiwJSkUU0qG1KXpuQtaxkFCmVaB-oyL7ipKJdMNczQObrczk0__Bx1iKK3Qemuk4N2YxA5z_MqhRLItqDyLgSvjdh420v_LQiISauYnInJmainImkVRYpd7ObLkIwZL5OVsM9SQoAVPGF3W0ynXb-s9iIoqwelW5tMRtE6-_87v5ztjQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26228972</pqid></control><display><type>article</type><title>The numerical solution of bilinear data reconciliation problems using unconstrained optimization methods</title><source>Elsevier ScienceDirect Journals</source><creator>Schraa, Oliver J. ; Crowe, Cameron M.</creator><creatorcontrib>Schraa, Oliver J. ; Crowe, Cameron M.</creatorcontrib><description>A new approach to solving steady state data reconciliation problems with bilinear constraints is proposed. Previously it was shown by Crowe that these problems can be solved using the method of matrix projection. In this work the objective function and its constraints are put into unconstrained form using Lagrange multipliers. Unconstrained optimization methods based on analytical derivatives are then used to solve the unconstrained formulation. The unconstrained approach is tested on two different reconciliation problems from the literature using a number of Newton-type unconstrained optimization methods. The unconstrained methods are compared in terms of robustness and efficiency in solving the example problems. The performance of the unconstrained approach is compared to that of the method of matrix projection and the projected Lagrangian algorithm implemented in GAMS/MINOS.</description><identifier>ISSN: 0098-1354</identifier><identifier>EISSN: 1873-4375</identifier><identifier>DOI: 10.1016/0098-1354(96)00130-5</identifier><identifier>CODEN: CCENDW</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Chemical engineering ; Exact sciences and technology ; Metrology, automation</subject><ispartof>Computers &amp; chemical engineering, 1996, Vol.20, p.S727-S732</ispartof><rights>1996</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-2fbe9b40a453506d01c0f71bcb350b197f76d4d430307354097256f836a4cb4f3</citedby><cites>FETCH-LOGICAL-c364t-2fbe9b40a453506d01c0f71bcb350b197f76d4d430307354097256f836a4cb4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0098135496001305$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,4010,4036,4037,23909,23910,25118,27900,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3110456$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schraa, Oliver J.</creatorcontrib><creatorcontrib>Crowe, Cameron M.</creatorcontrib><title>The numerical solution of bilinear data reconciliation problems using unconstrained optimization methods</title><title>Computers &amp; chemical engineering</title><description>A new approach to solving steady state data reconciliation problems with bilinear constraints is proposed. Previously it was shown by Crowe that these problems can be solved using the method of matrix projection. In this work the objective function and its constraints are put into unconstrained form using Lagrange multipliers. Unconstrained optimization methods based on analytical derivatives are then used to solve the unconstrained formulation. The unconstrained approach is tested on two different reconciliation problems from the literature using a number of Newton-type unconstrained optimization methods. The unconstrained methods are compared in terms of robustness and efficiency in solving the example problems. The performance of the unconstrained approach is compared to that of the method of matrix projection and the projected Lagrangian algorithm implemented in GAMS/MINOS.</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><subject>Metrology, automation</subject><issn>0098-1354</issn><issn>1873-4375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PxCAQhonRxHX1H3jgYIweqkOhtL2YmI1fySZe1jOhFFxMW1agJvrrpe5mj57IMM87MA9C5wRuCBB-C1BXGaEFu6r5NQChkBUHaEaqkmaMlsUhmu2RY3QSwgcA5KyqZmi9Wms8jL32VskOB9eN0boBO4Mb29lBS49bGSX2WrlBpSv5199413S6D3gMdnjH45C6IXqZEi12m2h7-7Mlex3Xrg2n6MjILuiz3TlHb48Pq8Vztnx9elncLzNFOYtZbhpdNwwkK2gBvAWiwJSkUU0qG1KXpuQtaxkFCmVaB-oyL7ipKJdMNczQObrczk0__Bx1iKK3Qemuk4N2YxA5z_MqhRLItqDyLgSvjdh420v_LQiISauYnInJmainImkVRYpd7ObLkIwZL5OVsM9SQoAVPGF3W0ynXb-s9iIoqwelW5tMRtE6-_87v5ztjQw</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Schraa, Oliver J.</creator><creator>Crowe, Cameron M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1996</creationdate><title>The numerical solution of bilinear data reconciliation problems using unconstrained optimization methods</title><author>Schraa, Oliver J. ; Crowe, Cameron M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-2fbe9b40a453506d01c0f71bcb350b197f76d4d430307354097256f836a4cb4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><topic>Metrology, automation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schraa, Oliver J.</creatorcontrib><creatorcontrib>Crowe, Cameron M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schraa, Oliver J.</au><au>Crowe, Cameron M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The numerical solution of bilinear data reconciliation problems using unconstrained optimization methods</atitle><jtitle>Computers &amp; chemical engineering</jtitle><date>1996</date><risdate>1996</risdate><volume>20</volume><spage>S727</spage><epage>S732</epage><pages>S727-S732</pages><issn>0098-1354</issn><eissn>1873-4375</eissn><coden>CCENDW</coden><abstract>A new approach to solving steady state data reconciliation problems with bilinear constraints is proposed. Previously it was shown by Crowe that these problems can be solved using the method of matrix projection. In this work the objective function and its constraints are put into unconstrained form using Lagrange multipliers. Unconstrained optimization methods based on analytical derivatives are then used to solve the unconstrained formulation. The unconstrained approach is tested on two different reconciliation problems from the literature using a number of Newton-type unconstrained optimization methods. The unconstrained methods are compared in terms of robustness and efficiency in solving the example problems. The performance of the unconstrained approach is compared to that of the method of matrix projection and the projected Lagrangian algorithm implemented in GAMS/MINOS.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/0098-1354(96)00130-5</doi></addata></record>
fulltext fulltext
identifier ISSN: 0098-1354
ispartof Computers & chemical engineering, 1996, Vol.20, p.S727-S732
issn 0098-1354
1873-4375
language eng
recordid cdi_proquest_miscellaneous_26228972
source Elsevier ScienceDirect Journals
subjects Applied sciences
Chemical engineering
Exact sciences and technology
Metrology, automation
title The numerical solution of bilinear data reconciliation problems using unconstrained optimization methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T12%3A48%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20numerical%20solution%20of%20bilinear%20data%20reconciliation%20problems%20using%20unconstrained%20optimization%20methods&rft.jtitle=Computers%20&%20chemical%20engineering&rft.au=Schraa,%20Oliver%20J.&rft.date=1996&rft.volume=20&rft.spage=S727&rft.epage=S732&rft.pages=S727-S732&rft.issn=0098-1354&rft.eissn=1873-4375&rft.coden=CCENDW&rft_id=info:doi/10.1016/0098-1354(96)00130-5&rft_dat=%3Cproquest_cross%3E26228972%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26228972&rft_id=info:pmid/&rft_els_id=0098135496001305&rfr_iscdi=true