In silico design of metal-free hydrophosphate catalysts for hydrogenation of CO2 to formate
CO2 reduction by H2 using metal-free catalysts is highly challenging. Frustrated Lewis pairs (FLPs) have been considered potential metal-free catalysts for this reaction. However, most FLPs are unstable, which limits their practical applications. In this study, a class of novel metal-free catalysts...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2022-02, Vol.24 (5), p.2901-2908 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2908 |
---|---|
container_issue | 5 |
container_start_page | 2901 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 24 |
creator | Wang, Honglei Zhao, Yanliang Zhao, Huixuan Yang, Junxia Zhai, Dong Sun, Lei Deng, Weiqiao |
description | CO2 reduction by H2 using metal-free catalysts is highly challenging. Frustrated Lewis pairs (FLPs) have been considered potential metal-free catalysts for this reaction. However, most FLPs are unstable, which limits their practical applications. In this study, a class of novel metal-free catalysts composed of K3−nHnPO4 (n = 0, 1, 2) and B(C6F5−mHm)3 (m = 0, 3, 5) were prepared and identified as effective catalysts for CO2 hydrogenation to formate by density functional theory (DFT) calculations. The simulations show that the B–H bond formation is the rate-determining step (RDS). The acid/base strength and repulsive steric interactions affect the corresponding energy barrier. Therefore, the catalytic performance can be improved by choosing a suitable Lewis acid or base. Among these catalysts, the B(C6H5)3–KH2PO4 pair, with the lowest barrier height (26.3 kcal mol−1) in RDS, is suggested as a promising metal-free catalyst for CO2 hydrogenation. This study may provide strategies for designing new LP-based metal-free catalysts. |
doi_str_mv | 10.1039/d1cp04582b |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2622481589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624697668</sourcerecordid><originalsourceid>FETCH-LOGICAL-p146t-2e5a9307cdb1e7c43446a0c7aa775b9876b60fccc8031fddafc1719df1b7b87a3</originalsourceid><addsrcrecordid>eNpdjrlOw0AURUcIJEKg4QtGoqExzOZZSmSxRIqUBiqKaNbYke0xnnGRv8chiILqPumcd3UBuMXoASOqHh22A2KlJOYMLDDjtFBIsvO_W_BLcJXSHiGES0wX4HPVw9S0jY3Q-dTsehgD7HzWbRFG72F9cGMc6piGWmcPrZ7JIeUEQxxPcOd7nZv481htCMzxyLrZvgYXQbfJ3_zmEny8PL9Xb8V687qqntbFMK_KBfGlVhQJ6wz2wjLKGNfICq2FKI2SghuOgrVWIoqDczpYLLByARthpNB0Ce5PvcMYvyaf8rZrkvVtq3sfp7QlnBAmcSnVrN79U_dxGvt53dFiXAnOJf0G3mVjHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624697668</pqid></control><display><type>article</type><title>In silico design of metal-free hydrophosphate catalysts for hydrogenation of CO2 to formate</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wang, Honglei ; Zhao, Yanliang ; Zhao, Huixuan ; Yang, Junxia ; Zhai, Dong ; Sun, Lei ; Deng, Weiqiao</creator><creatorcontrib>Wang, Honglei ; Zhao, Yanliang ; Zhao, Huixuan ; Yang, Junxia ; Zhai, Dong ; Sun, Lei ; Deng, Weiqiao</creatorcontrib><description>CO2 reduction by H2 using metal-free catalysts is highly challenging. Frustrated Lewis pairs (FLPs) have been considered potential metal-free catalysts for this reaction. However, most FLPs are unstable, which limits their practical applications. In this study, a class of novel metal-free catalysts composed of K3−nHnPO4 (n = 0, 1, 2) and B(C6F5−mHm)3 (m = 0, 3, 5) were prepared and identified as effective catalysts for CO2 hydrogenation to formate by density functional theory (DFT) calculations. The simulations show that the B–H bond formation is the rate-determining step (RDS). The acid/base strength and repulsive steric interactions affect the corresponding energy barrier. Therefore, the catalytic performance can be improved by choosing a suitable Lewis acid or base. Among these catalysts, the B(C6H5)3–KH2PO4 pair, with the lowest barrier height (26.3 kcal mol−1) in RDS, is suggested as a promising metal-free catalyst for CO2 hydrogenation. This study may provide strategies for designing new LP-based metal-free catalysts.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d1cp04582b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carbon dioxide ; Catalysts ; Density functional theory ; Hydrogen bonds ; Hydrogenation ; Lewis acid ; Potassium phosphates ; Reduction (metal working)</subject><ispartof>Physical chemistry chemical physics : PCCP, 2022-02, Vol.24 (5), p.2901-2908</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Honglei</creatorcontrib><creatorcontrib>Zhao, Yanliang</creatorcontrib><creatorcontrib>Zhao, Huixuan</creatorcontrib><creatorcontrib>Yang, Junxia</creatorcontrib><creatorcontrib>Zhai, Dong</creatorcontrib><creatorcontrib>Sun, Lei</creatorcontrib><creatorcontrib>Deng, Weiqiao</creatorcontrib><title>In silico design of metal-free hydrophosphate catalysts for hydrogenation of CO2 to formate</title><title>Physical chemistry chemical physics : PCCP</title><description>CO2 reduction by H2 using metal-free catalysts is highly challenging. Frustrated Lewis pairs (FLPs) have been considered potential metal-free catalysts for this reaction. However, most FLPs are unstable, which limits their practical applications. In this study, a class of novel metal-free catalysts composed of K3−nHnPO4 (n = 0, 1, 2) and B(C6F5−mHm)3 (m = 0, 3, 5) were prepared and identified as effective catalysts for CO2 hydrogenation to formate by density functional theory (DFT) calculations. The simulations show that the B–H bond formation is the rate-determining step (RDS). The acid/base strength and repulsive steric interactions affect the corresponding energy barrier. Therefore, the catalytic performance can be improved by choosing a suitable Lewis acid or base. Among these catalysts, the B(C6H5)3–KH2PO4 pair, with the lowest barrier height (26.3 kcal mol−1) in RDS, is suggested as a promising metal-free catalyst for CO2 hydrogenation. This study may provide strategies for designing new LP-based metal-free catalysts.</description><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Density functional theory</subject><subject>Hydrogen bonds</subject><subject>Hydrogenation</subject><subject>Lewis acid</subject><subject>Potassium phosphates</subject><subject>Reduction (metal working)</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdjrlOw0AURUcIJEKg4QtGoqExzOZZSmSxRIqUBiqKaNbYke0xnnGRv8chiILqPumcd3UBuMXoASOqHh22A2KlJOYMLDDjtFBIsvO_W_BLcJXSHiGES0wX4HPVw9S0jY3Q-dTsehgD7HzWbRFG72F9cGMc6piGWmcPrZ7JIeUEQxxPcOd7nZv481htCMzxyLrZvgYXQbfJ3_zmEny8PL9Xb8V687qqntbFMK_KBfGlVhQJ6wz2wjLKGNfICq2FKI2SghuOgrVWIoqDczpYLLByARthpNB0Ce5PvcMYvyaf8rZrkvVtq3sfp7QlnBAmcSnVrN79U_dxGvt53dFiXAnOJf0G3mVjHQ</recordid><startdate>20220202</startdate><enddate>20220202</enddate><creator>Wang, Honglei</creator><creator>Zhao, Yanliang</creator><creator>Zhao, Huixuan</creator><creator>Yang, Junxia</creator><creator>Zhai, Dong</creator><creator>Sun, Lei</creator><creator>Deng, Weiqiao</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20220202</creationdate><title>In silico design of metal-free hydrophosphate catalysts for hydrogenation of CO2 to formate</title><author>Wang, Honglei ; Zhao, Yanliang ; Zhao, Huixuan ; Yang, Junxia ; Zhai, Dong ; Sun, Lei ; Deng, Weiqiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p146t-2e5a9307cdb1e7c43446a0c7aa775b9876b60fccc8031fddafc1719df1b7b87a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Density functional theory</topic><topic>Hydrogen bonds</topic><topic>Hydrogenation</topic><topic>Lewis acid</topic><topic>Potassium phosphates</topic><topic>Reduction (metal working)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Honglei</creatorcontrib><creatorcontrib>Zhao, Yanliang</creatorcontrib><creatorcontrib>Zhao, Huixuan</creatorcontrib><creatorcontrib>Yang, Junxia</creatorcontrib><creatorcontrib>Zhai, Dong</creatorcontrib><creatorcontrib>Sun, Lei</creatorcontrib><creatorcontrib>Deng, Weiqiao</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Honglei</au><au>Zhao, Yanliang</au><au>Zhao, Huixuan</au><au>Yang, Junxia</au><au>Zhai, Dong</au><au>Sun, Lei</au><au>Deng, Weiqiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In silico design of metal-free hydrophosphate catalysts for hydrogenation of CO2 to formate</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2022-02-02</date><risdate>2022</risdate><volume>24</volume><issue>5</issue><spage>2901</spage><epage>2908</epage><pages>2901-2908</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>CO2 reduction by H2 using metal-free catalysts is highly challenging. Frustrated Lewis pairs (FLPs) have been considered potential metal-free catalysts for this reaction. However, most FLPs are unstable, which limits their practical applications. In this study, a class of novel metal-free catalysts composed of K3−nHnPO4 (n = 0, 1, 2) and B(C6F5−mHm)3 (m = 0, 3, 5) were prepared and identified as effective catalysts for CO2 hydrogenation to formate by density functional theory (DFT) calculations. The simulations show that the B–H bond formation is the rate-determining step (RDS). The acid/base strength and repulsive steric interactions affect the corresponding energy barrier. Therefore, the catalytic performance can be improved by choosing a suitable Lewis acid or base. Among these catalysts, the B(C6H5)3–KH2PO4 pair, with the lowest barrier height (26.3 kcal mol−1) in RDS, is suggested as a promising metal-free catalyst for CO2 hydrogenation. This study may provide strategies for designing new LP-based metal-free catalysts.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1cp04582b</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2022-02, Vol.24 (5), p.2901-2908 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_2622481589 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Carbon dioxide Catalysts Density functional theory Hydrogen bonds Hydrogenation Lewis acid Potassium phosphates Reduction (metal working) |
title | In silico design of metal-free hydrophosphate catalysts for hydrogenation of CO2 to formate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A38%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20silico%20design%20of%20metal-free%20hydrophosphate%20catalysts%20for%20hydrogenation%20of%20CO2%20to%20formate&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Wang,%20Honglei&rft.date=2022-02-02&rft.volume=24&rft.issue=5&rft.spage=2901&rft.epage=2908&rft.pages=2901-2908&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d1cp04582b&rft_dat=%3Cproquest%3E2624697668%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624697668&rft_id=info:pmid/&rfr_iscdi=true |